

Thermochemical Cycle for Combustion of Methane

Burning methane (from an energy standpoint) to generate power:

A mole of C-H bonds is 416 kJ (we have 4) A mole of O=O bonds is 498 kJ (we have 2)

A mole of O-H bonds is 467 kJ (we have 4) A mole of C=O bonds is 803 kJ (we have 2)

Exothermic Reactions Require Bond Breaking to Cost Less Energy than Bond Making...

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Hydrocarbons make good fuels because: O-H & C=O bonds are stronger than O=O, C-H, and C-C bonds

Table	4.2	Bo	Bond Energies (in kJ/mol)						
	Н	C	N	0	S	F	Cl	Br	I
Single B	Bonds								
Н	436								
C	416	356							
N	391	285	160						
O	467	336	201	146					
S	347	272	_	_	226				
F	566	485	272	190	326	158			
Cl	431	327	193	205	255	255	242		
Br	366	285	_	234	213	_	217	193	
I	299	213	_	201		_	209	180	151
Multiple	e Bonds								
C = C	598			C=N	616		C=O	803 ii	n CO ₂
C≡C	813			$C \equiv N$	866		C≡O	1073	
N=N	418			0=0	498				
$N \equiv N$	946								

Source: Data from Darrell D. Ebbing, *General Chemistry*, Fourth Edition, 1993 Houghton Mifflin Co. Data originally from *Inorganic Chemistry: Principles of Structure and Reactivity*, Third Edition, by James E. Huheey, 1983, Addison Wesley Longman.

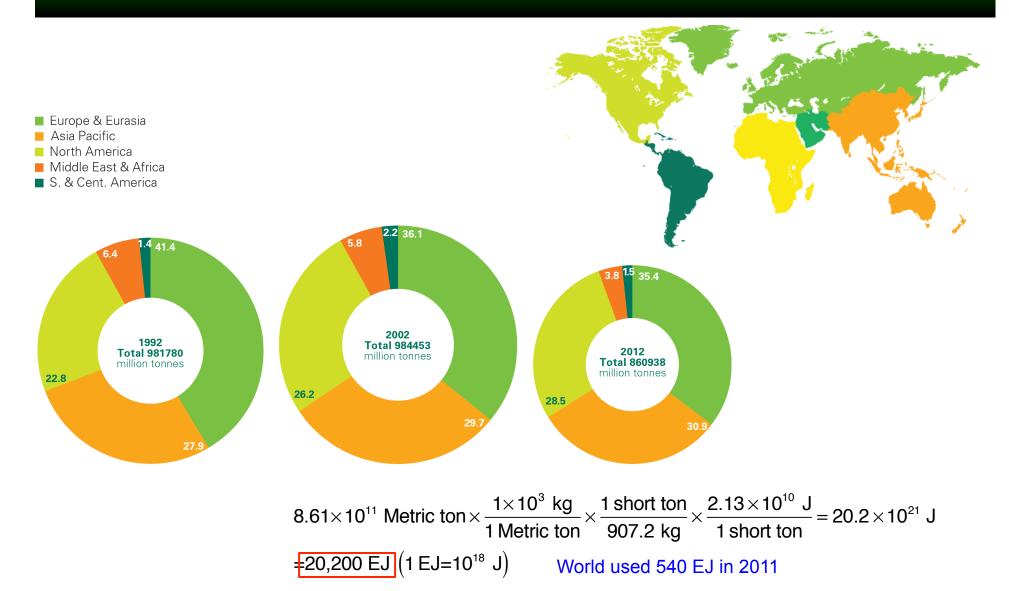
Energy Content of (Fossil) Fuels

Note: these are energies per unit mass; energies per mol change the order a bit...

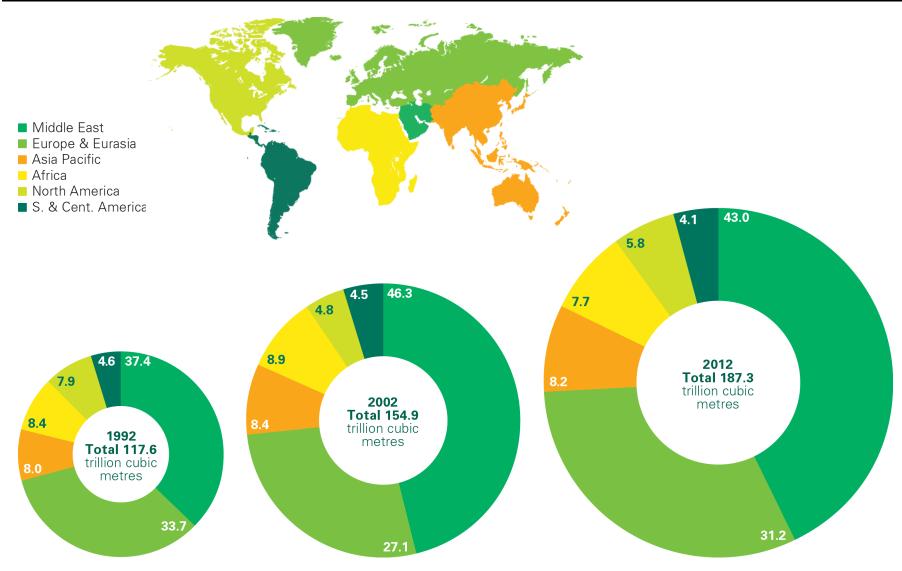
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 4.3	Energy Content	of Fuels	
So	ource	kJ/g	
Ну	ydrogen	140	
Me	ethane	56	
Pro	opane	51	
Ga	asoline	48	
Co	oal (hard)	31	
Et	hanol	30	
We	ood (oak)	14	

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

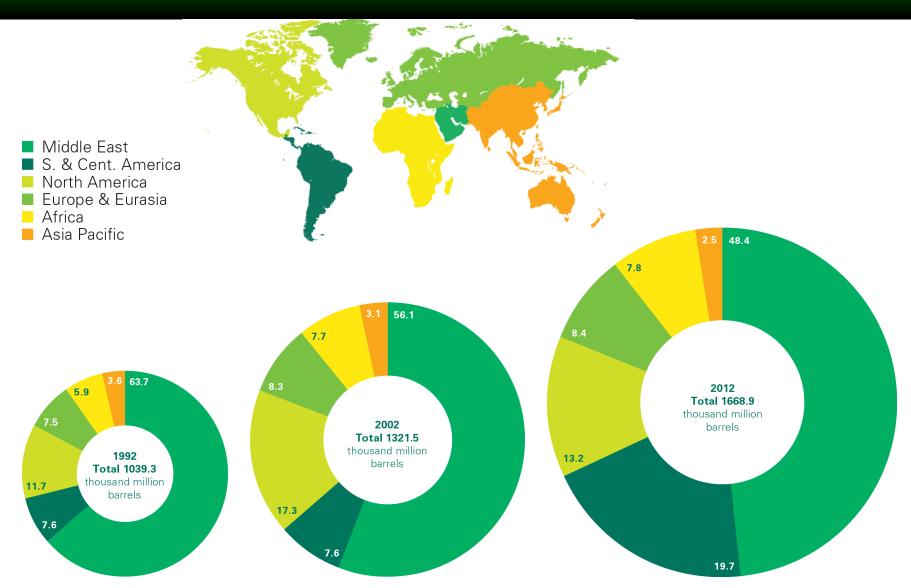

Table 4.4 Energy Content of Various U.S. Coals					
Type of Coal	State of Origin	Energy Content (kJ/g)			
Anthracite	Pennsylvania	30.5			
Bituminous	Maryland	30.7			
Subbituminous	Washington	24.0			
Lignite (brown coal)	North Dakota	16.2			
Peat	Mississippi	13.0			
Wood	Various	10.4–14.1			

anthracite coal


lignite coal

Distribution of proved coal reserves in 1992, 2002 and 2012

Source: Survey of Energy Resources 2010, World Energy Council.


Distribution of proved gas reserves in 1992, 2002 and 2012

 $1.873 \times 10^{14} \text{ m}^3 \times \frac{3.83 \times 10^7 \text{ J}}{1 \text{ m}^3} = 7.17 \times 10^{21} \text{ J=} \boxed{7,170 \text{ EJ}}$

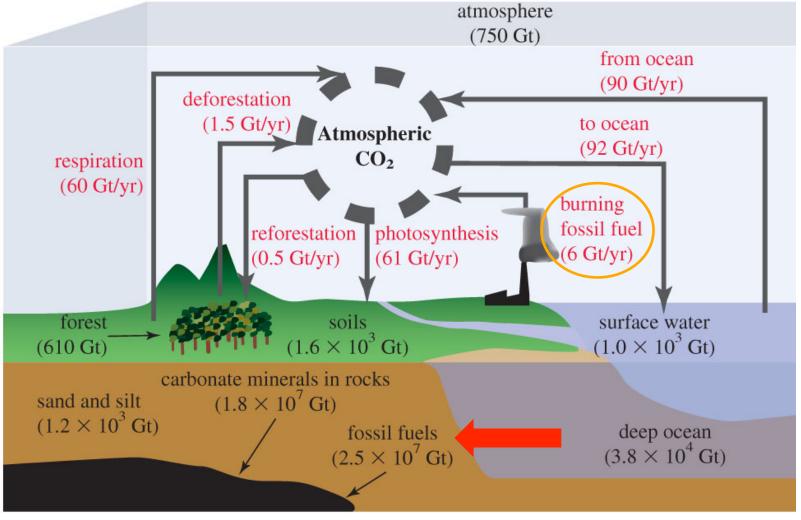
BP Statistical Review of World Energy 2013
World used 540 EJ in 2011 © BP 2013

Distribution of proved oil reserves in 1992, 2002 and 2012

 $1.6689 \times 10^{12} \text{ barrels} \times \frac{6.12 \times 10^9 \text{ J}}{1 \text{ barrel}} = 10.2 \times 10^{21} \text{ J} = 10,200 \text{ EJ}$

BP Statistical Review of World Energy 2013 © BP 2013

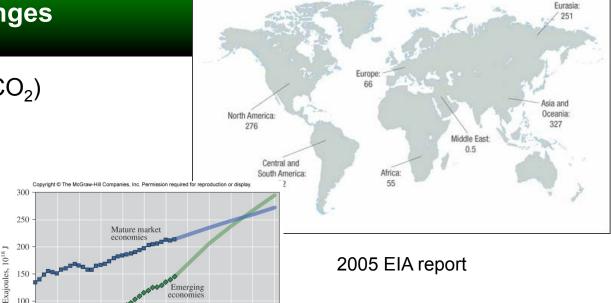
Fossil Fuel Distribution Worldwide (2012 Proved Reserves)


Coal	20,200 EJ
Natural Gas	7,170 EJ
Oil	10,200 EJ

Carbon (C) Cycle

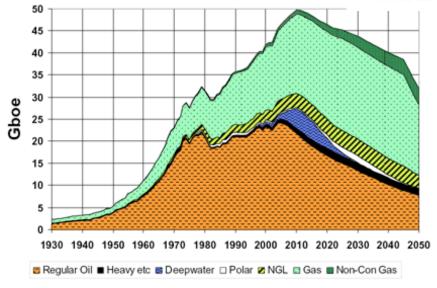
Plenty of fossil fuels left in this earth...

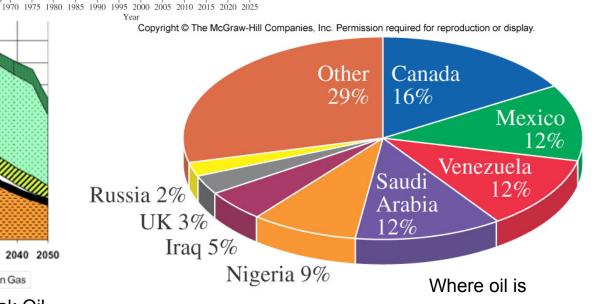
current combustion practices contribute to net ~3-4 Gt C/year addition to atmosphere


Gt=gigatonne (a billion metric tons (10⁹), 2200 billion pounds (2.2x10¹²)

85% of Our Energy Comes From Fossil Fuels

Energy Issues / Challenges


- 1. Global Climate Change (CO₂)
- 2. Peak Oil
- 3. Energy Security
- 4. Growing Demand
- 5. Impact on Economy
- 6. Air & Water Pollution



Transitional economies (EE/FSU)

World coal reserves in gigatons

ASPO: OIL & GAS PRODUCTION PROFILES 2005 Base Case

Source: Association for the Study of Peak Oil

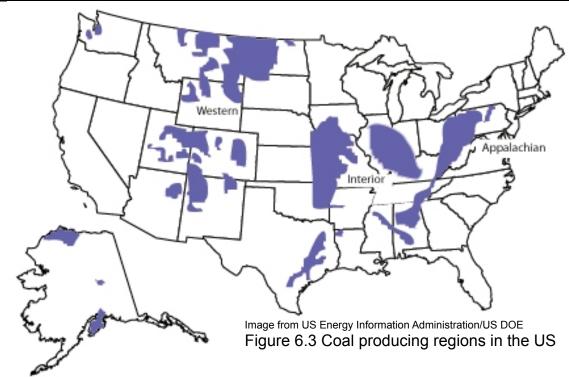
Useful Energy Conversion Factors

Note: these would be provided for an exam

- 1 barrel (42 gallons) of crude oil = $6.12 \times 10^9 \,\mathrm{J}$
- 1 gallon gasoline = $1.31 \times 10^8 \,\mathrm{J}$
- 1 cubic ft natural gas = $1.08 \times 10^6 \,\mathrm{J}$
- 1 short ton coal = $2.13 \times 10^{10} \,\text{J}$ (note:1 short ton = $907.2 \,\text{kg}$)
- 1 kilowatt-hour of electricity = $3.60 \times 10^6 \,\mathrm{J}$

Coal

- + Abundant
- + Distributed throughout the globe
- A solid
- Lower energy content than
 petroleum, more CO₂ emission per unit energy
- Difficult & dangerous to obtain
- Environmentally disruptive to obtain & utilize (remember SO₂ & NO₂ are side products)

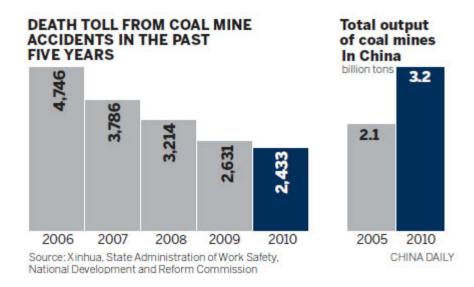

Photo by Platte River Power Authority
Figure 6.1 – Coal pile at a coal-fired
power plant

Coal in the USA

19.7 Quads of Energy from Coal in the US in 2011

World Reserves:	
Coal	20,200 EJ
Natural Gas	7,170 EJ
Oil	10,200 EJ
US use:	
Coal	20.8 EJ

Remember, different types of coal have different energy contents:



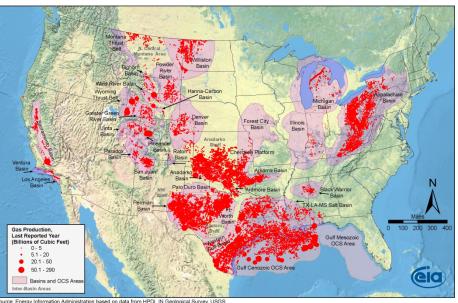
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 4.4 Energy Content of Various U.S. Coals						
Type of Coal	State of Origin	Energy Content (kJ/g)				
Anthracite	Pennsylvania	30.5				
Bituminous	Maryland	30.7				
Subbituminous	Washington	24.0				
Lignite (brown coal)	North Dakota	16.2				
Peat	Mississippi	13.0				
Wood	Various	10.4–14.1				

Coal Costs

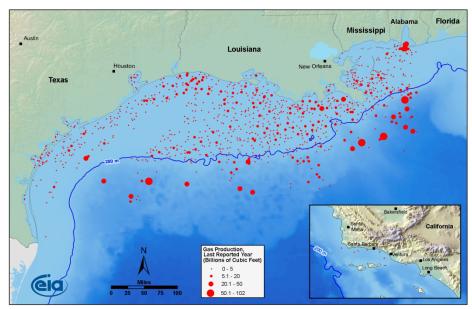
- Deaths from mining accidents
 - 48 in 2010 in US:
 http://www.huffingtonpost.com/
 2010/12/30/us-coal-mine-deaths-in-20 n 802790.html
 - 3242 in 1907 in US:
 http://www.msha.gov/mshainfo/factsheets/mshafct2.htm
- Hundreds die each year from black lung disease: http://www.npr.org/templates/story/story.php?
 storyld=126021059
- Air pollution linked to 2 million premature deaths per year according to the WHO: http://www.who.int/mediacentre/factsheets/fs313/en/index.html

http://sweetandsoursocialism.wordpress.com/ 2011/03/02/chinas-coal-mine-deaths-fall-but-stillremain-high-peoples-daily/


Natural Gas in the USA

Composition: mostly methane (CH₄) Smell: mercaptans added to the gas

24.9 Quads of natural gas used in US in 2011:


World Reserves:	
Coal	20,200 EJ
Natural Gas	7,170 EJ
Oil	10,200 EJ
US use:	
Coal	20.8 EJ
Natural Gas	26.3 EJ

Gas Production in Conventional Fields, Lower 48 States

Updated: April 8, 2009

Gas Production in Offshore Fields, Lower 48 States

Source: Energy Information Administration based on data from MMS, HPDI, CA Dept of Oil , Gas & Geothermal Updated: April 8, 2009

Getting to Natural Gas Deposits: Hydraulic Fracturing

- aka "fracking"
- Rocks not always porous enough to allow access to the natural gas
- Solution: pump in some fluid (steam + other stuff) at high pressure, break up the rocks
 - prop up the holes with something porous, like bits of sand

Issues:

- possible ground water contamination
- fracking fluids & products can be carcinogenic
- opens many new sites for gas extraction
- Waste/produced water may overwhelm water treatment facilities

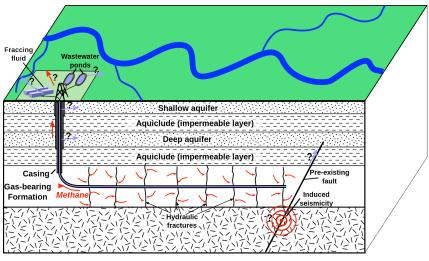
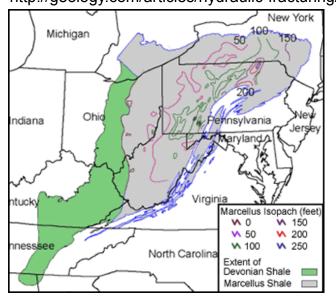



Image by Mike Norton/CC BY-SA 3.0 Figure 6.9 – Hydraulic fracturing (fracking)

http://geology.com/articles/hydraulic-fracturing/

Hydraulic fracturing, cont.

Hydraulic Fracturing Fluid Product Component Information Disclosure

6/11/2012	Fracture Date
CO	State:
Weld	County:
05-123-35265	API Number:
Great Western Oil & Gas Company	Operator Name:
JBL 34-44	Well Name and Number:
-104.87574	Longitude:
40.52732	Latitude:
NAD83	Long/Lat Projection:
Gas	Production Type:
7,293	True Vertical Depth (TVD):
416,123	Total Water Volume (gal)*:

Hydraulic Fracturing Fluid Composition:

Trade Name	Supplier	Purpose	Ingredients	Chemical Abstract Service Number (CAS #)	Maximum Ingredient Concentration in Additive (% by mass)**	Maximum Ingredient Concentration in HF Fluid (% by mass)**	Comments
Sand (Proppant)	cws	Propping Agent					
DAP-925	cws	Acid Corrosion Inhibitor					
DWP-621	cws	Friction Reducer					
DWP-913	cws	Clay Control					
DWP-937	cws	Surfactant					
DWP-944	cws	Biocide					
Hydrochloric Acid	cws	Clean Perforations					
			2,2-Dibromo-3-Nitrilopropionamide	10222-01-2	40.00%	0.01086%	
			Aluminum oxide	1344-28-1	1.50%	0.01029%	
			Apatite	64476-38-6	0.10%	0.00083%	
			Biotite	1302-27-8	0.10%	0.00083%	
			Calcite	471-34-1	1.00%	0.01746%	
			Choline chloride	67-48-1	100.00%	0.03969%	
			Citrus terpenes	94266-47-4	60.00%	0.07956%	
			Crystalline silica (Quartz)	14808-60-7	100.00%	8.39521%	
			Fatty acids	Trade Secret	30.00%	0.00023%	
			Formaldehyde	50-00-0	0.10%	0.00000%	
			Goethite	1310-14-1	0.10%	0.00249%	
			Hydrochloric acid	7647-01-0	37.00%	0.08703%	
			Isopropanol	67-63-0	50.00%	0.06630%	
			Methanol	67-56-1	60.00%	0.00046%	
			Triethylene glycol	112-27-6	20.00%	0.02652%	

			Triethylene glycol	112-27-6	20.00%	0.02652%	
Water	Customer & CWS	Base Fluid & Mix Water	Water	7732-18-5	100.00%	91.30765%	

^{*} Total Water Volume sources may include fresh water, produced water, and/or recycled water

Ingredient information for chemicals subject to 29 CFR 1910.1200(i) and Appendix D are obtained from suppliers Material Safety Data Sheets (MSDS)

^{**} Information is based on the maximum potential for concentration and thus the total may be over 100%

Oil

Figure 6.10 – The oil refinery in Anacortes, Washington

World Reserves:	
Coal	20,200 EJ
Natural Gas	7,170 EJ
Oil	10,200 EJ
US use:	
Coal	20.8 EJ
Natural Gas	26.3 EJ
Oil	37.2 EJ

US consumption in 2011 35.3 Quads

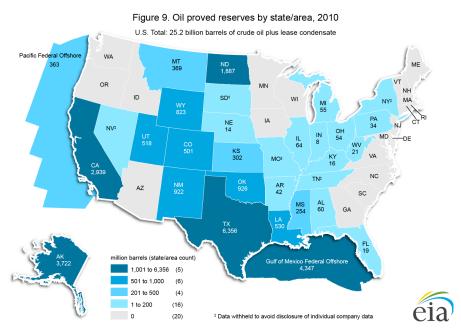
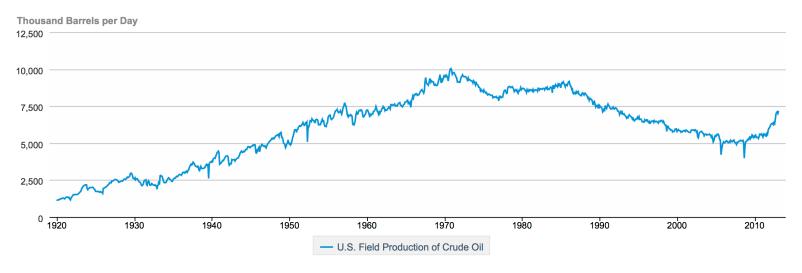



Image from US Energy Information Administration/US DOE Figure 6.14 - US proved reserves of crude oil

US Peak Oil

U.S. Field Production of Crude Oil

eia Source: U.S. Energy Information Administration

Image from US Energy Information Administration/US DOE Figure 6.16 – Peak oil production in the US was 10,044 thousand barrels per day in November 1970

Oil impacts

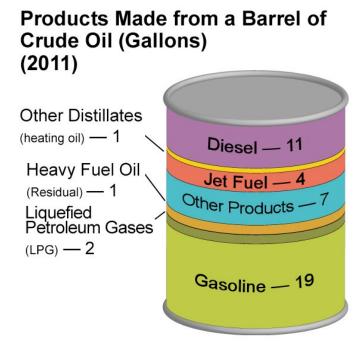
Photo by US NOAA *Amoco Cadiz* off the coast of France in 1978 spilled 1.6 million barrels of crude oil.

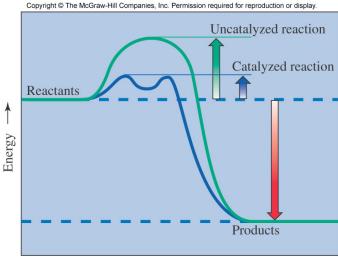
Photo by US NOAA
The Exxon Valdez in
the Prince William
Sound off the south
coast of Alaska in
1989 spilled up to
750,000 barrels of
crude oil.

Photo by US Coast Guard
The *Deepwater Horizon* or BP oil spill in 2010 resulted 4.9 million barrels of crude oil spilling into the Gulf of Mexico.

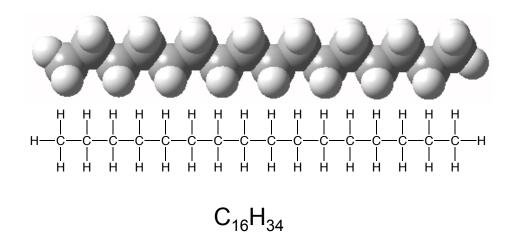
Oil Refining

Image by Theresa Knott/CC BY-SA 3.0 Figure 6.11 – Fractional distillation

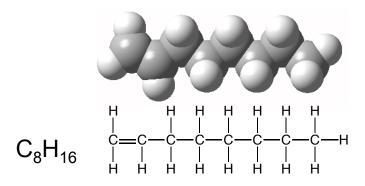



Image from US EIA/US DOE
Figure 6.12 — End products for a barrel of crude oil

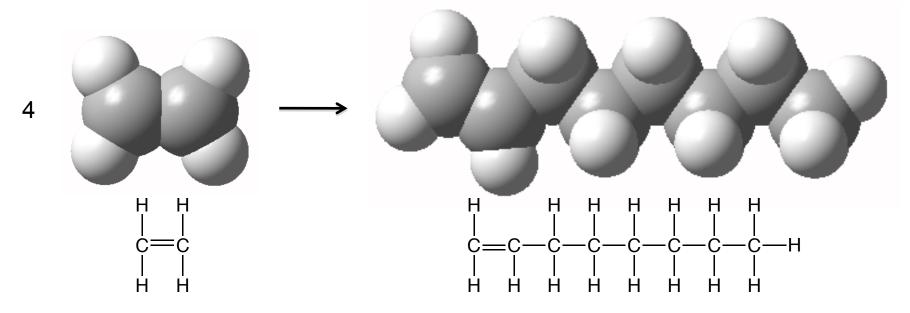
10% of a barrel of crude will **distill** to gasoline, Where does the other ~37% come from?


Cracking (section 4.8)

Cracking: process of breaking down long chain hydrocarbons into smaller molecules


- (a) **Thermal cracking**: high temperatures required
- (b) **Catalytic cracking**: a catalyst reduces the **activation energy** required to start the cracking process

Reaction pathway ->



Other ways to crack this compound depend on temperature and the catalyst used...

Building Larger Molecules Through Oligomerization

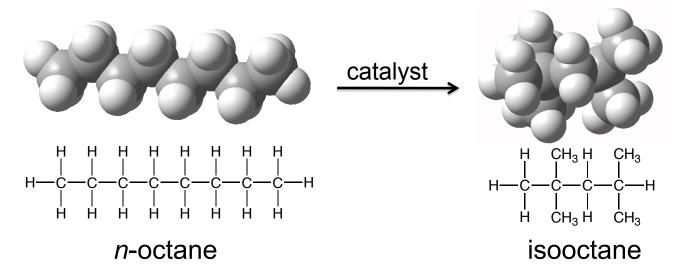
Example:

(Catalysts are an integral part of the oligomerization process)

Polymerization (Chapter 9)

example: 10,000 $C_2H_4 \rightarrow C_{20,000}H_{40,000}$

Isomers and Reforming to Improve Octane Ratings


Isomers have the same chemical formula but different structure Example: there are 18 different structures possible for octane (C_8H_{18})

The **reforming** process converts one isomer to another:

Octane rating: higher numbers indicate less

propensity for engine knocking; gasoline with rating = 87 has the same knocking characteristics as 87% isooctane +

13% *n*-heptane

Table 4.6	Octane Ratings of Several Compounds					
Co	ompound	Octane Ra	ting			
n-(Octane	-20				
n-	Heptane	0	← defined			
Iso	ooctane	100	← defined			
Me	ethanol	107				
Eti	hanol	108				
M	TBE	116				

Oxygenated Fuels (section 4.9)

- oxygen-containing molecules with octane ratings > 100
 - ethanol (C₂H₆O, also written as C₂H₅OH)
 - MTBE: methyl *tert*-butyl ether $(C_5H_{12}O, also written as CH_3OC(CH_3)_3)$

oxygenated gasolines

burn more cleanly—less CO formed

reformulated gasolines

- a subset of oxygenated gasolines
- lower percentage of more volatile hydrocarbons (e.g. benzene)
- purpose: reduce volatile organic compounds (the ones that contribute to ground level ozone production)
- risk-benefit analysis of oxygenated gasolines:
 - positive: substantially less pollutants coming out of the tailpipe
 - negative: additives like MTBE are soluble in water—potential health consequences...

Question: do oxygenated fuels provide more energy than non-oxygenated fuels?