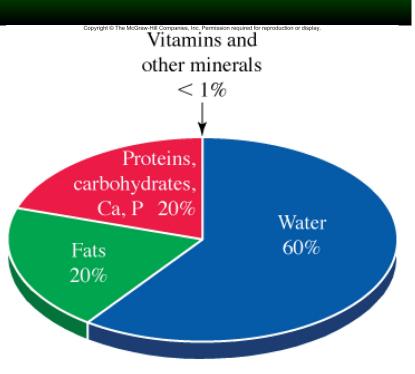
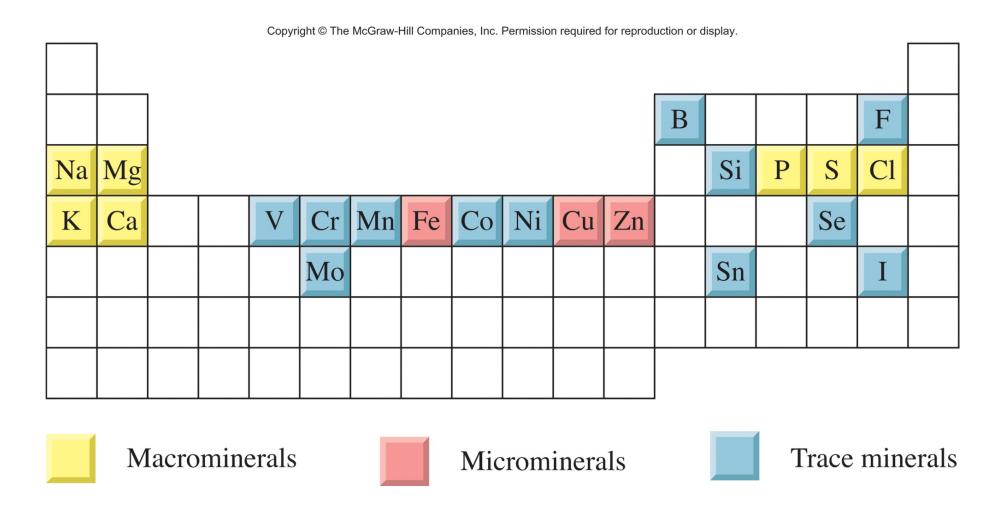
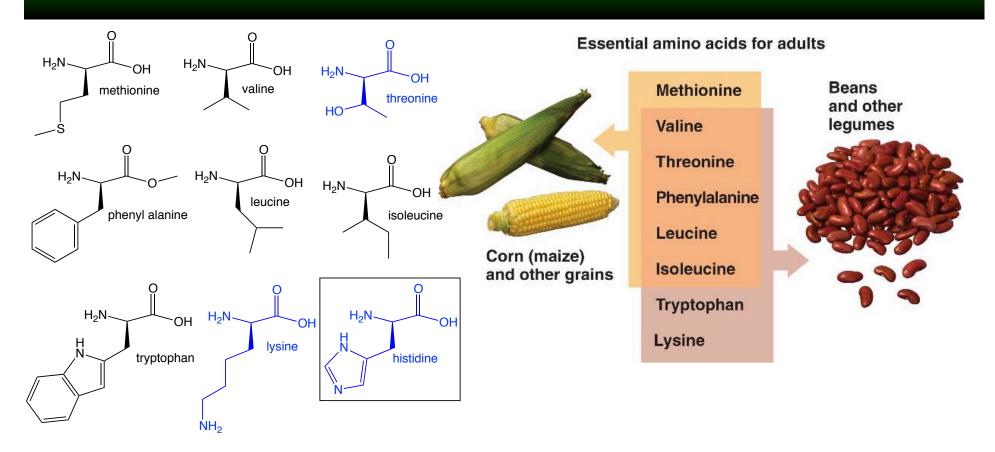

You are what you eat

Macronutrients: fats, proteins, carbohydrates Essential amino acids


Vitamins and minerals Hydrophobic

OH vitamin A (retinol)


Hydrophilic


Table 11.1	Percent Water, Fat, Carbohydrates, and Protein in Selected Foods				
Food	Water	Fat	Carbohydrates	Protein	
white bread	37	4	48	8	
2% milk	89	2	5	3	
chocolate chip cookies	3	23	69	4	
peanut butter	1	50	19	25	
sirloin steak	57	15	0	28	
tuna fish	63	2	0	30	
black beans (cooked)	66	<1	23	9	

Nutritional periodic Table

Essential amino acids

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 11.5	The Essential Amino Acids		
histidine		lysine	threonine
isoleucine		methionine	tryptophan
leucine		phenylalanine	valine

Essential fatty acids

Caloric "Need"

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 11. <i>7</i>	le 11.7 Estimated Calorie Requirements (United States)					
ACTIVITY LEVEL						
Age (yr)	Sedentary* Moderately Active [†] Active [‡]					
Females						
14–18	1800	2000	2400			
19–30	2000	2000–2200	2400			
31–50	1800	2000	2200			
51+	1600	1800	2000–2200			
Males						
14–18	2200	2400-2800	2800-3200			
19–30	2400	2600-2800	3000			
31–50	2200	2400-2600	2800-3000			
51+	2000	2200-2400	2400-2800			

^{*} Sedentary means a lifestyle that includes only the light physical activity associated with typical day-to-day life.

Source: Dietary Guidelines for Americans, 2005, USDA.

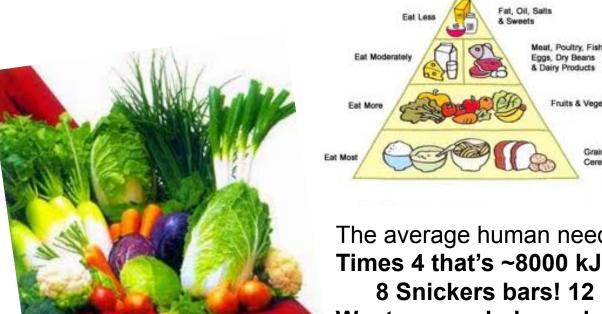
[†] *Moderately active* means a lifestyle that includes physical activity equivalent to walking about 1–3 miles per day at 3–4 miles per hour, in addition to the light physical activity associated with typical day-to-day life.

[‡] Active means a lifestyle that includes physical activity equivalent to walking more than 3 miles per day at 3–4 miles per hour, in addition to the light physical activity associated with typical day-to-day life.

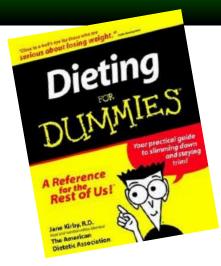
Energy use

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 11.8 Energy Expenditure for Common Physical Activities*					
Moderate Physical Activity	Cal/hr	Vigorous Physical Activity	Cal/hr		
hiking	370	jogging (5 mph)	590		
light gardening/yard work	330	heavy yard work (chopping wood)	440		
dancing	330	swimming (freestyle laps)	510		
golf (walking, carrying clubs)	330	aerobics	480		
bicycling (<10 mph)	290	bicycling (>10 mph)	590		
walking (3.5 mph)	280	walking (4.5 mph)	460		
weight lifting (light workout)	220	weightlifting (vigorous workout)	440		
stretching	180	basketball (vigorous)	440		


^{*} Values include both resting metabolic rate and activity expenditure for a 70-kg (154-pound) person. Calories burned per hour are higher for persons heavier than 154 pounds and lower for persons who weigh less.

Feeling the heat


How long would you have to walk to "burn off" a snickers bar? (271 Calories per snickers; 280 Calories per hour for walking)

271 Calories
$$\times \frac{1 \text{ hr}}{280 \text{ Calories}} = 0.97 \text{ hr}$$

Feeling the Heat

Candice Esposito ND

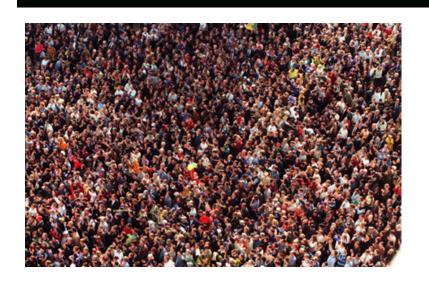
The average human needs about 2000 Cal per day. Times 4 that's ~8000 kJ per day.

Fruits & Vegetables

Grains &

8 Snickers bars! 12 12 oz. Cokes! Want a more balanced diet?

How about 6 Snickers bars and 3 Cokes?

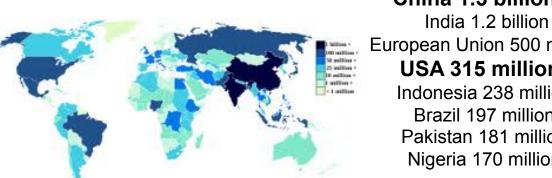


9 Cal/g→3500 Calories/lb

Feeling the heat

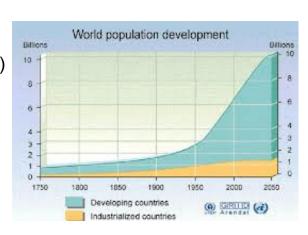
How long would you have to jog to lose a pound of fat? (3500 Calories per pound; 590 Calories per hour for jogging)

3500 Calories
$$\times \frac{1 \text{ hr}}{590 \text{ Calories}} = 5.9 \text{ hr}$$



7 billion

As of October 31, 2011


China 1.3 billion (19.2%)

India 1.2 billion (17%)

European Union 500 million (7.1%)

USA 315 million (4.5%)

Indonesia 238 million (3.3%) Brazil 197 million (2.8%) Pakistan 181 million (2.6%) Nigeria 170 million (2.4%)

Feeding the World

7 billion (7 x 10⁹) people

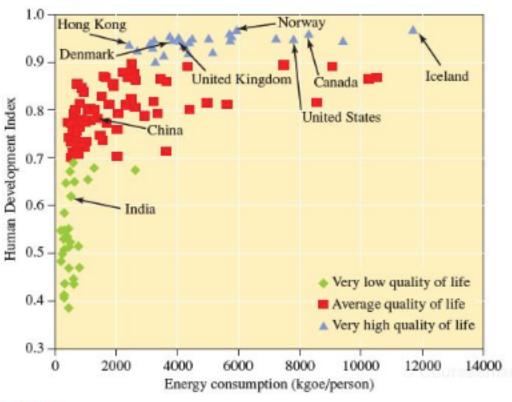
As of October 31, 2011

8000 kJ per person per day 3 million (3 x 10⁶) kJ per person per year

7 billion x 3 million = $21 \times 10^{15} \text{ kJ} = 21 \times 10^{18} \text{ J}$

1 Exajoule (EJ) = 10^{18} J

21 EJ to feed the world


 $21 \times 10^{18} \text{ J} \times 1 \text{ tank of gas/2.1} \times 10^9 \text{ J} = 10 \text{ billion}$ (US passenger fleet = 250 million; fill up 50 times/year = 12.5 billion) $21 \times 10^{18} \text{ J} \times 1 \text{ Snickers bar/1.0} \times 10^6 \text{ J} = 21 \text{ trillion}$ (2 billion sold in 2011)

Energy Use in 2011

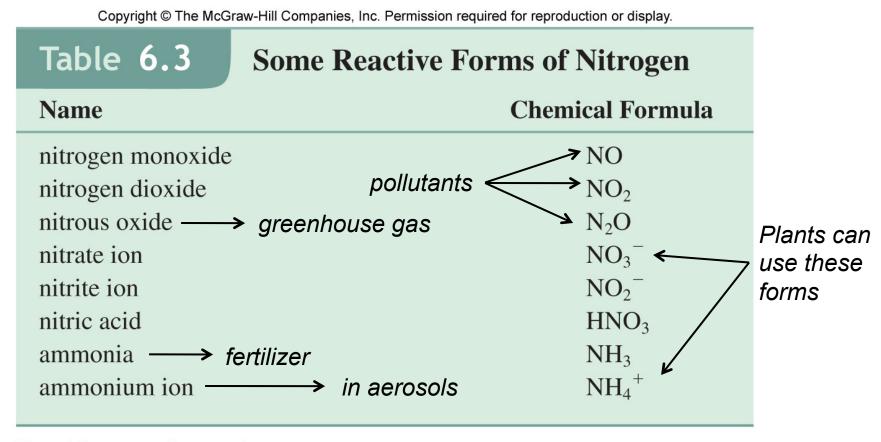
7 billion (7 x 10⁹) people
As of October 31, 2011

21 EJ to feed the world

World 540 EJ – 100% (with 1.3 billion people) 77 GJ/person China 115 EJ – 21.3% (with 1.3 billion people) 88 GJ/person USA 100 EJ – 18.5% (with 315 million people) 317 GJ/person EU 74 EJ – 13.8% (with 500 million people) 148 GJ/person Former SU 45 EJ – 8.3% (with 285 million people) 158 GJ/person

Based on countries shown on the graph such as Hong Kong, it is possible to substantially reduce energy consumption without necessarily decreasing quality of life.

Figure 4.26


The relationship between Human Development Index and energy consumption. Energy consumption is reported in kilograms of oil equivalent (kgoe) per person. 1 kgoe = 4.4×10^{10} J or the approximate energy released in burning a kilogram of oil.

Source: United Nations Human Development Report 2007/2008.

1 kgoe $- 4.4 \times 10^7 \text{ J (not } 10^{10} \text{ as the caption says)}$ 1000 kgoe/person = 44 GJ/person

Reactive Nitrogen

Dinitrogen gas is 78% of the atmosphere, but it's inert (i.e. useless) to the vast majority of living things...reactive forms are more useful but also potentially more dangerous:

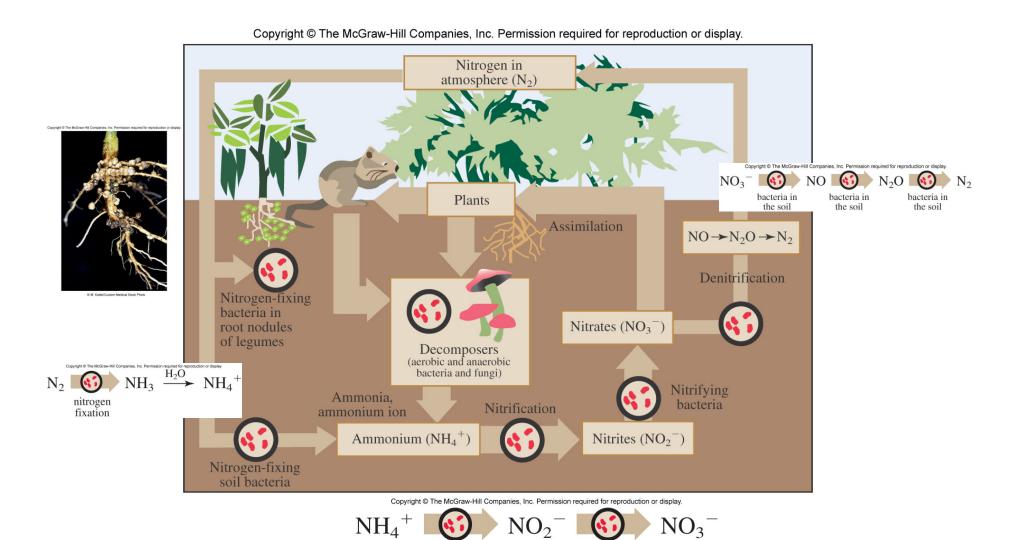
Note: All are naturally occurring.

Redox in the Nitrogen Cycle

 1) Nitrogen fixation by soil bacteria N(0) N(-III) N(-III) N(-III)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. N_2 H_2O NH_4^+ nitrogen fixation

• 2) Nitrification

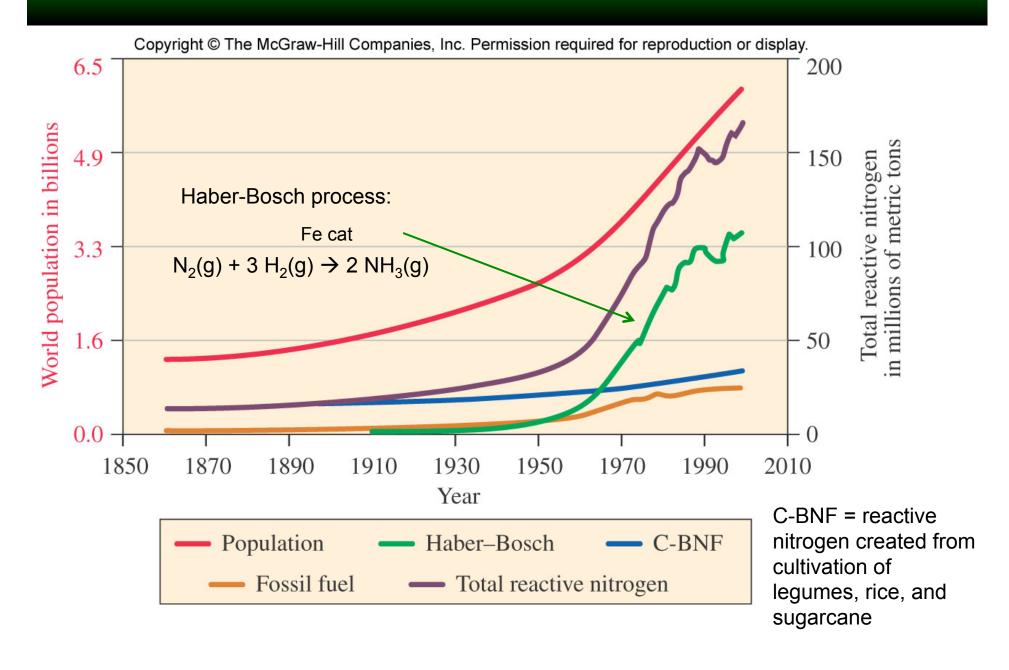

N(tricky)

N(0)

• 3) Denitrification

N(II)

The Nitrogen Cycle


bacteria in

the soil

bacteria in

the soil

Link Between Reactive Nitrogen and Population Growth

