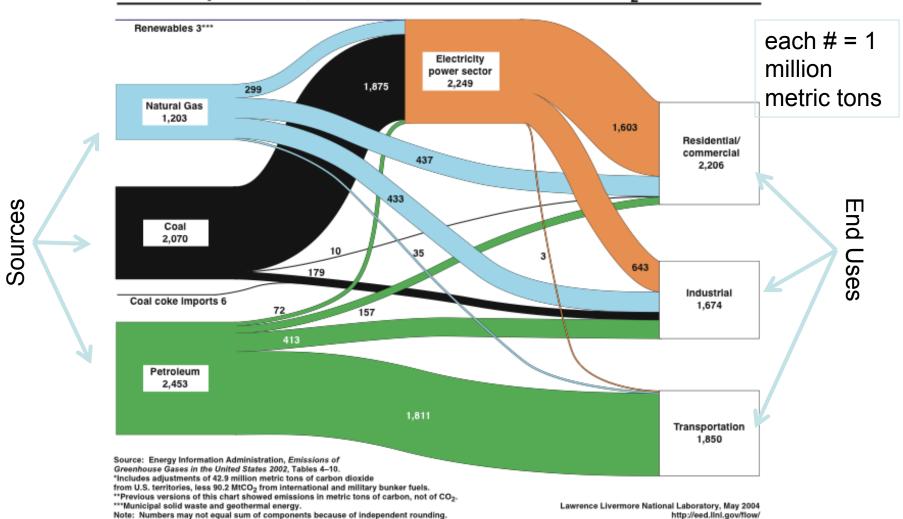

US Emissions of CO₂

If CO₂ is participating in the *enhanced* greenhouse effect, it would be good to know how much is being made with respect to how much C is in the world...



Gt=gigatonne (a billion (10⁹) metric tons, 2200 billion pounds (2.2x10¹²)

A Different Look at US CO₂ Emissions (2002)

U.S. 2002 Carbon Dioxide Emissions from Energy Consumption — 5,682* Million Metric Tons of CO₂**

Carbon (C) Cycle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

De-reforestation 1 Gt/year Burning fossil fuels 6 Gt/year Total: 7 Gt/year Net to ocean 2 Gt/year
Respiration-Photosynthesis 1 Gt/year
Total: 3 Gt/year ~3-4 Gt C/year addition to atmosphere

Gt=gigatonne (a billion metric tons (109), 2200 billion pounds (2.2x1012)

How much CO₂ do you emit when you drive to Denver?

60 miles
$$\times \frac{1 \text{ gal}}{20 \text{ miles}} \times \frac{6 \text{ lbs}}{1 \text{ gal}} \times \frac{1 \text{ kg}}{2.2 \text{ lbs}} \times \frac{1000 \text{ g}}{1 \text{ kg}} = 8,200 \text{ g gasoline used, but we want to know how much CO2 was produced while driving that distance...$$

Molar mass of gasoline? (assume C₈H₁₈)

$$8x12.0 g = 96.0 g$$

 $18x1.0 g = 18.0 g$
= 114.0 g/mol C₈H₁₈

Converting from C₈H₁₈ to CO₂?

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O$$

2 moles
$$C_8H_{18}$$
 = 16 moles CO_2

Molar mass of CO₂?

$$1x12.0 g = 12.0 g$$

 $2x16.0 g = 32.0 g$
 $= 44.0 g/mol CO_2$

Building Solution here: 8,200 g gasoline
$$\times \frac{1 \text{ mol } C_8 H_{18}}{114 \text{ g}} \times \frac{16 \text{ mol } CO_2}{2 \text{ mol } C_8 H_{18}} \times \frac{44 \text{ g } CO_2}{1 \text{ mol } CO_2} = 25,000 \text{ g } CO_2$$

How much CO₂ is emitted by a coal train worth of coal?

```
Coal train:
  120 cars
                                                                         grams \rightarrow moles \rightarrow moles \rightarrow grams
  120 tons/car=14,400 tons
  1 ton = 1016 kg \Rightarrow 1.46 \times 10<sup>7</sup> kg Coal
 Molar mass of coal? (assume C<sub>135</sub>H<sub>96</sub>O<sub>4</sub>NS)
                                                                                                                96.0 g
                                                                                        9x16.0 q
                                                                                                          = 144.0 q
                                                                                                                 14.0 g
                                                                                                                32.0 q
                                                                                                         = 1906.0 \text{ g/mol } C_{135}H_{96}O_9NS
Coal train=1.46 \times 10^7 \text{ kg} \times \frac{\text{mole}}{1.906 \text{kg}} = 7.61 \times 10^6 \text{ moles}
Converting from C<sub>135</sub>H<sub>96</sub>O<sub>9</sub>NS to CO<sub>2</sub>?
       2 C_{135}H_{96}O_{9}NS + 313 O_{2} \rightarrow 270 CO_{2} + 96 H_{2}O + 2 NO_{2} + 2 SO_{2}
             2 moles C_{135}H_{96}O_9NS = 270 moles CO_2
 Molar mass of CO<sub>2</sub>?
                                               7.61 \times 10^6 moles Coal \times \frac{270 \text{ moles CO}_2}{2 \text{ moles Coal}} \times \frac{44.0 \text{ g CO}_2}{\text{mole CO}_2} = 4.52 \times 10^{10} \text{ g CO}_2
             1x12.0 g = 12.0 g
             2x16.0 g = 32.0 g
             = 44.0 \text{ g/mol CO}_{2}
                                                                                                                                     (1Gt = 1 \times 10^{15} \text{ a})
```

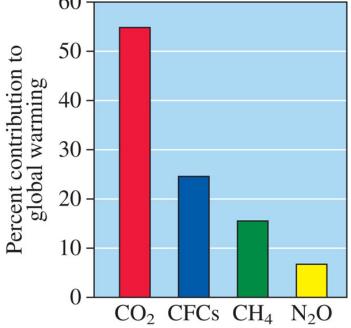
6.6 Gt=150,000 coal trains

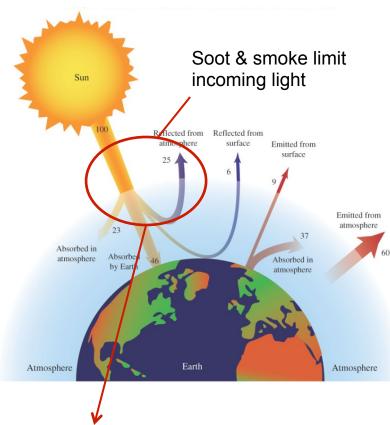
Other Greenhouse Gases and their Relative Effects

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 3.2	Greenhouse Gases–Concentration Changes and Lifetimes		
	CO_2	CH ₄	N ₂ O
Preindustrial concentration (1750	278 ppm	0.700 ppm	0.270 ppm
2005 concentration	385 ppm	1.75 ppm	0.314 ppm
Average rate of concentration change, 1990–2005	1.5 ppm/year	0.007 ppm/year	0.0008 ppm/year
Global atmospheric lifetime	50–200 years*	12 years	114 years


^{*}A single value for the atmospheric lifetime of CO₂ is not possible. Different removal mechanisms take place at different rates, leading to variation in atmospheric lifetime.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Table 3.3	Global Warming Potential for Three Greenhouse Gases		
Substance	Global Warming Potential (GWP)*	Tropospheric Abundance (ppm)	
CO_2	1	385	
$\mathrm{CH_4}$	23	1.8	
N_2O	296	0.31	

^{*}GWP values are given for the estimated direct and indirect effects over a 100-year period and are relative to the assigned value of 1 for CO2.

Important factors: Concentration Lifetime (connected to concentration & reactivity) Light absorption efficiency

Albedo-ratio of radiation reflected relative to the amount incident on the surface-impacted by what's on the surface. Deforestation, melting snow, etc.

Photosynthesis dependent upon CO₂ concentration & temperature

Projecting the Future: Climate Models


equilibrium

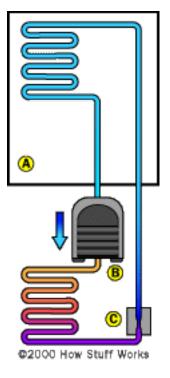
 $CO_2 + H_2O \rightleftharpoons H_2CO_3$

Product favored by pressure, higher concentration in deep ocean

Reactants favored by higher temperatures...

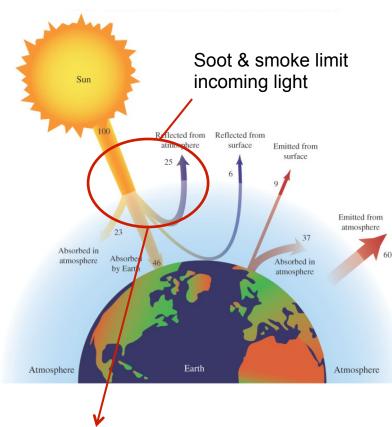
Carbonic acid, the carbonate of carbonated beverages

Soda Siphon


Demonstrates:

- Refrigeration/steam turbine
- Temperature/Pressure dependence of CO₂ dissolving in oceans equilibrium
- Acids & Bases

Soda Siphon: Refrigeration



- 5. Cold HFC gas is sucked up by the compressor, and the cycle repeats
- 1. Compressor (B) compresses HFC gas. (compressed gas heats up as it is pressurized (orange))
- 2. Coils on the back of the refrigerator dissipate HFC gas heat. The HFC gas condenses into HFC liquid (purple) at high pressure

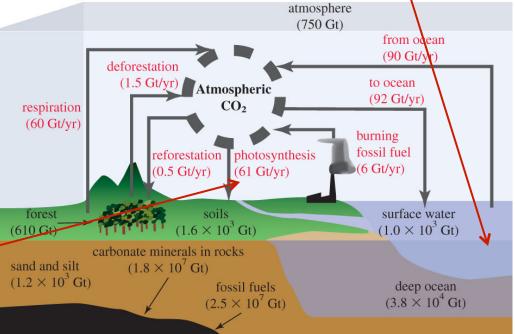
- 4. Liquid HFC vaporizes (light blue), its temperature dropping to -27 F. This makes the inside of the refrigerator cold (A)
- 3. High-pressure HFC liquid flows through the expansion valve (C). (a small hole). On one side of the hole is high-pressure HFC liquid. On the other side of the hole is a low-pressure area (the compressor is pumping gas out of that side).

In the Soda Siphon, a small needle punctures the high pressure CO₂ cartridge. Expansion into our relative "vacuum" cools the CO₂ gas and the cartridge

Albedo-ratio of radiation reflected relative to the amount incident on the surface-impacted by what's on the surface. Deforestation, melting snow, etc.

Photosynthesis dependent upon CO₂ concentration & temperature

Projecting the Future: Climate Models


equilibrium

 $CO_2 + H_2O \rightleftharpoons H_2CO_3$

Product favored by pressure, higher concentration in deep ocean

Reactants favored by higher temperatures...

Carbonic acid, the carbonate of carbonated beverages

03.03.25.greenhouse-gases.html

Soda Siphon: Acid-Base Chemistry

While discussing the carbon cycle, we talk about carbon going into the ocean & coming out of the ocean & that this was an equilibrium (Fig. 3.17)

Gaseous CO₂ dissolves in the water & vaporizes from water

$$CO_2(g) + H_2O(I) \rightleftharpoons CO_2(aq)$$

• Dissolved CO₂ reacts with H₂O forming H₂CO₃ (carbonic acid)

$$CO_2$$
 (aq) + H_2O (I) \rightleftharpoons H_2CO_3 (aq)

• Dissolved H₂CO₃ reacts with H₂O forming HCO₃⁻ (bicarbonate) and H₃O⁺ (hydronium ion)

$$H_2CO_3$$
 (aq) + H_2O (I) \rightleftharpoons HCO_3^- (aq) + H_3O^+ (aq)

Our definition of an **acid** is a substance that forms hydronium ions (H₃O⁺) when dissolved in water

Hydronium ion reacts with anthocyanin, the product is a different color

Concentration of Acid

Each
$$CO_2$$
 cartridge: 8.0 g $CO_2 \times \frac{\text{mol } CO_2}{44 \text{ g } CO_2} = 0.18 \text{ moles } CO_2$

0.18 moles CO₂ in 1 L aqueous solution = 0.18 M CO₂

 $[CO_2]=0.18M$

If the CO_2 equilibria reproduced below were to all favor products then we would have ~0.18 M H_3O^+ (this would correspond to a pH of ~0.7)

$$CO_2(g) + H_2O(I) \rightleftharpoons CO_2(aq)$$
 $CO_2(aq) + H_2O(I) \rightleftharpoons H_2CO_3(aq)$
 $H_2CO_3(aq) + H_2O(I) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$

In reality $[H_3O^+] = \sim 1.9 \times 10^{-4} \text{ M}$, corresponding to a pH of ~ 3.72 (at the pressure of our Seltzer bottle)

At atmospheric pressure $[H_3O^+] = \sim 2.5 \times 10^{-6} \text{ M}$ (a pH of ~ 5.6)