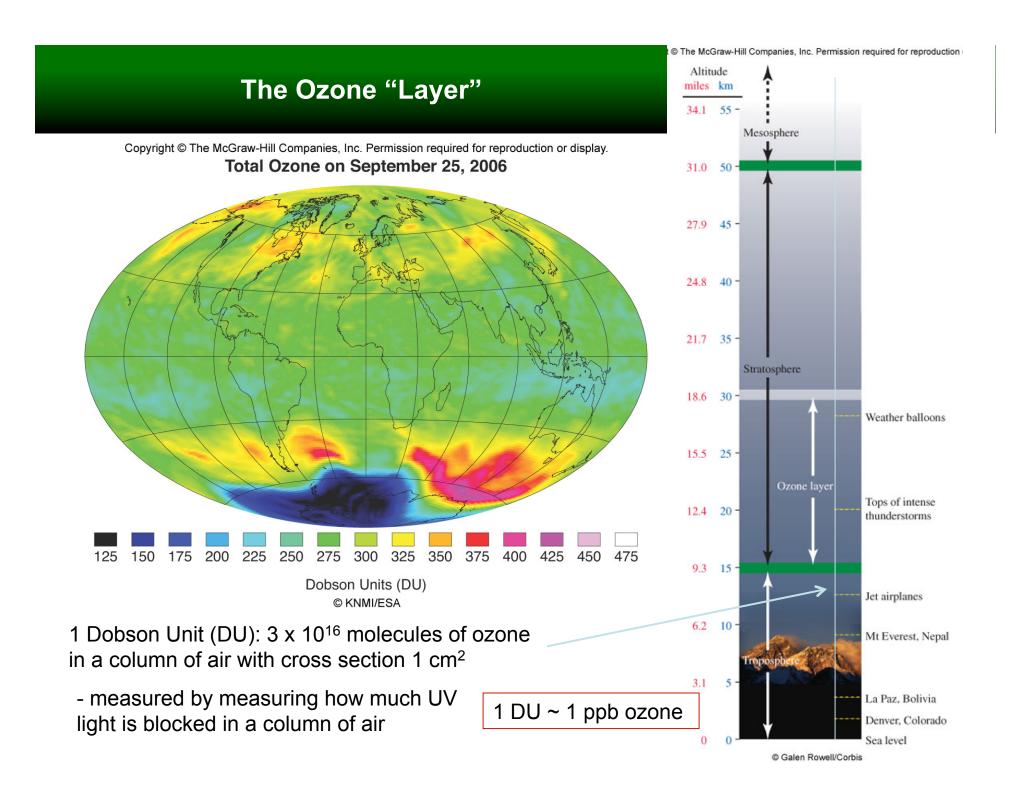
# CHEM 103: Chemistry in Context

**Unit 4.1** 

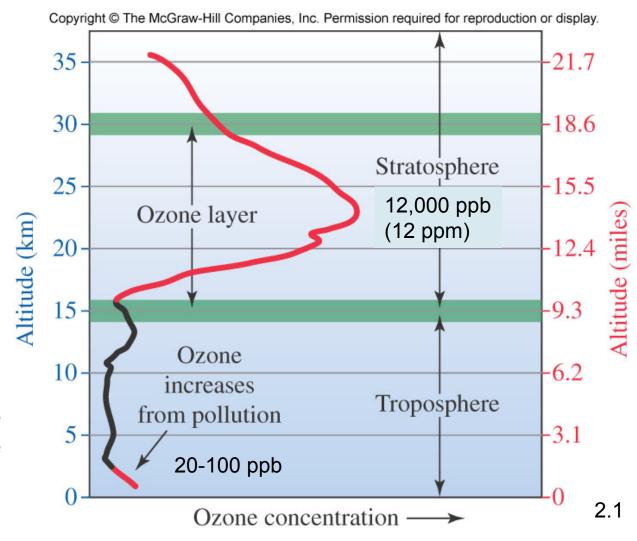

Atmospheric Chemistry: the ozone layer



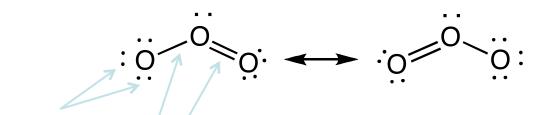
Reading: Chapter 2

#### Unit 4.1 Plan

- What is ozone and where does it come from?
  - allotropes (same element, different forms)
  - molecular structure
  - What does (UV) light do to us and how does ozone play a role?
  - light as radiant energy
  - interaction between UV light and ozone
  - biological impact of UV light
- Ozone depletion in the stratosphere and our response...
  - halogens and chlorofluorocarbons (CFCs)
  - social change (positive) resulting from widespread use of CFCs
  - atmospheric change (negative) resulting from widespread use of CFCs
  - replacements for CFCs




#### **Ozone: What and Where is It?**


energy + 
$$3O_2 \rightarrow 2O_3$$
 Ozone

Ozone is an **allotrope** of oxygen: different forms of same element with differing structures & hence differing properties

National Ambient Air Quality Standards (troposphere): 0.12 ppm for 1-hr average 0.08 ppm for 8-hr average (see table 1.5)



## Ozone, O<sub>3</sub>

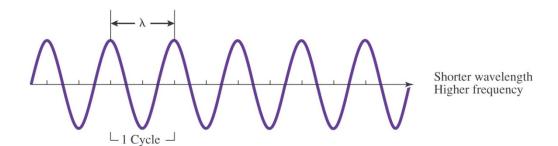


lone pair e-

bonding pair e-

true structure: both O-O distances are the same

indicates
resonance
structures—the
"true" structure is a
combination of the
canonical
resonance
structures


true shape: ozone is bent, just like water

#### **Review of Waves**





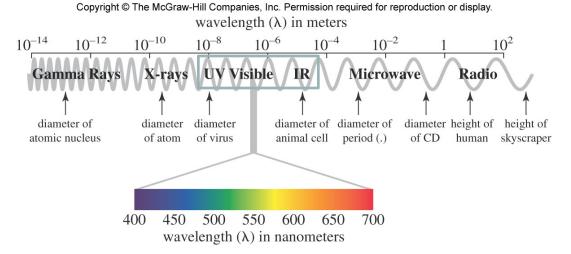
1 Cycle



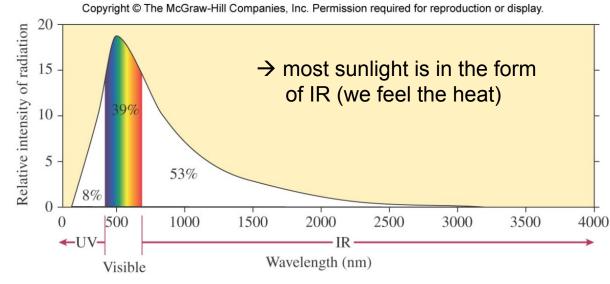
wavelength (λ): distance covered in one cycle (peak-to-peak or trough-to-trough)

frequency (v): number of cycles per unit time Hertz (Hz) = #cycles/second

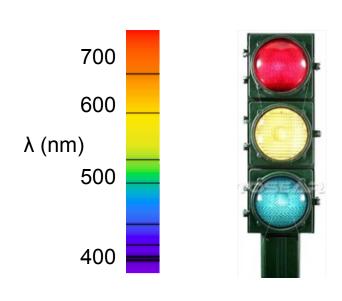



@ Philip Schemeister/National Geographic Image Collection

frequency 
$$(v) = \frac{\text{speed of light}(c)}{\text{wavelength}(\lambda)} \Rightarrow v\lambda = c \text{ (a constant) as } \lambda \uparrow, v \downarrow$$


note:  $c = 3 \times 10^8 \text{ m/s}$ 

#### **Light: a Subset of Radiant Energy**


Electromagnetic spectrum:



Output from the sun:



## **UV-Visible Spectrum**



versus



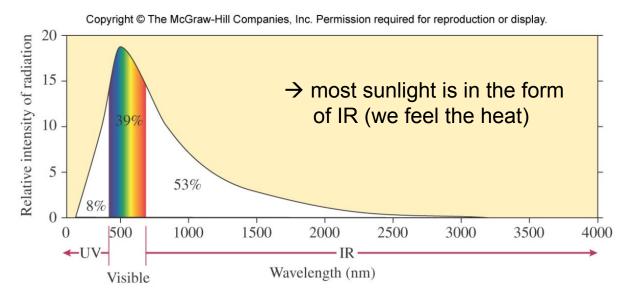
gov't officials didn't take CHEM 103...

TABLE 11-1 Visible light and complementary colors

| Wavelength range(nm) | Wave numbers (cm 1) | Color       | Complementary color |  |
|----------------------|---------------------|-------------|---------------------|--|
| < 400                | > 25,000            | ultraviolet |                     |  |
| 400-450              | 22,000-25,000       | violet      | yellow              |  |
| 450-490              | 20,000-22,000       | blue        | orange              |  |
| 490-550              | 18,000-20.000       | green       | red                 |  |
| 550-580              | 17,000-18,000       | yellow      | violet              |  |
| 580-650              | 15,000-17.000       | orange      | blue                |  |
| 650-700              | 14,000-15,000       | red         | green               |  |
| > 700                | < 14,000            | infrared    |                     |  |

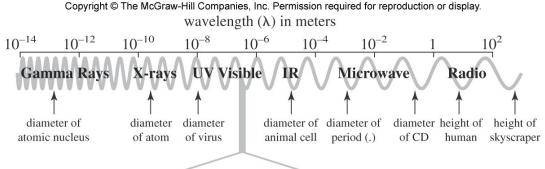
#### **Light: Waves/Particles of Radiant Energy**

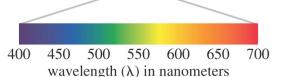
#### "Dual" nature of light:


- wave properties (λ,v)
   two light beams don't interfere with each other
- 2. particle properties
  --energies of light are
  quantized (while a wave is
  continuous), leading to
  photons: "packets" of radiation

Energy (E) =  $hc/\lambda$ 

h = Planck's constantc = speed of light

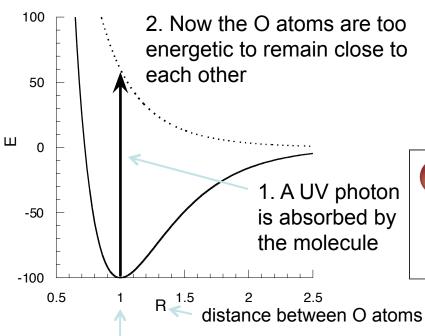

remember:  $v = c/\lambda$  therefore: E = hv


Thus, energy is proportional to frequency and inversely proportional to wavelength

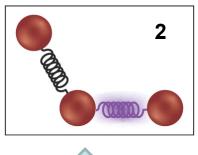


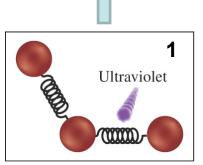
High energy: small λ, high v

Low energy: large λ, low v

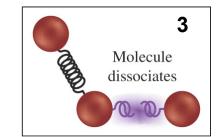






note:  $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ 


## **Using Light to Break Bonds**

#### Potential energy diagram:




A stable molecule has an equilibrium O-O distance





#### 3. O-O bond breaks



#### Net process:

## **Using Light to Break Bonds**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

| Table        | 4.2     | D   | 1.5                       | • (•         | 1.7/ | *   |     |        | -                 |
|--------------|---------|-----|---------------------------|--------------|------|-----|-----|--------|-------------------|
| Table 4.2    |         | Bo  | Bond Energies (in kJ/mol) |              |      |     |     |        |                   |
|              | Н       | C   | N                         | O            | S    | F   | Cl  | Br     | I                 |
| Single Bonds |         |     |                           |              |      |     |     |        |                   |
| Н            | 436     |     |                           |              |      |     |     |        |                   |
| C            | 416     | 356 |                           |              |      |     |     |        |                   |
| N            | 391     | 285 | 160                       | <b>V</b>     |      |     |     |        |                   |
| 0            | 467     | 336 | 201                       | 146          |      |     |     |        |                   |
| S            | 347     | 272 |                           |              | 226  |     |     |        |                   |
| F            | 566     | 485 | 272                       | 190          | 326  | 158 |     |        |                   |
| Cl           | 431     | 327 | 193                       | 205          | 255  | 255 | 242 |        |                   |
| Br           | 366     | 285 | _                         | 234          | 213  | _   | 217 | 193    |                   |
| I            | 299     | 213 | _                         | 201          | _    | _   | 209 | 180    | 151               |
| Multiple     | Bonds . |     |                           |              |      |     |     |        |                   |
| C = C        | 598     |     |                           | C=N          | 616  |     | C=O | 803 ii | n CO <sub>2</sub> |
| C≡C          | 813     |     |                           | $C \equiv N$ | 866  |     | C≡O | 1073   |                   |
| N=N          | 418     |     |                           | 0 = 0        | 498  | >   |     |        |                   |
| $N \equiv N$ | 946     |     |                           |              |      |     |     |        |                   |
|              |         |     |                           |              |      |     |     |        |                   |

More energy is required to break O-O bonds in oxygen than in ozone...

Source: Data from Darrell D. Ebbing, *General Chemistry*, Fourth Edition, 1993 Houghton Mifflin Co. Data originally from *Inorganic Chemistry: Principles of Structure and Reactivity*, Third Edition, by James E. Huheey, 1983, Addison Wesley Longman.

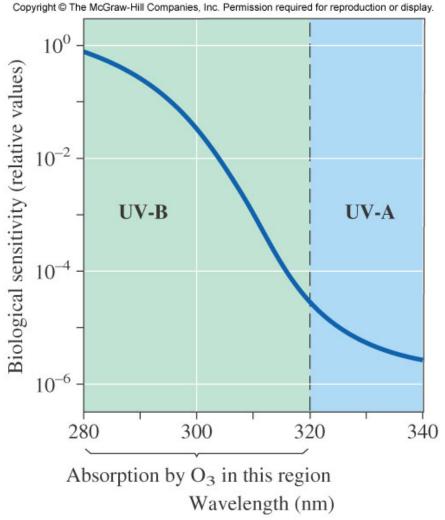
## **Types of UV Light and Chemical/Biological Effects**

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

| Copyright & the Mostaw till Companies, the Fermiosion required for reproduction of display. |                                                    |                                                             |                                                                                                                               |  |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Table 2.4                                                                                   | 2.4 Categories and Characteristics of UV Radiation |                                                             |                                                                                                                               |  |  |  |
| Radiation                                                                                   | Wavelength<br>Range (nm)                           | Relative<br>Energy                                          | Comments                                                                                                                      |  |  |  |
| UV-A                                                                                        | 320–400                                            | Least energetic of these three UV categories                | Least damaging, reaches Earth's surface in greatest amount                                                                    |  |  |  |
| UV-B                                                                                        | 280–320                                            | More energetic<br>than UV-A, less<br>energetic than<br>UV-C | More damaging than UV-A, less damaging than UV-C, most absorbed by O <sub>3</sub> in the stratosphere                         |  |  |  |
| UV-C                                                                                        | 200–280                                            | Most energetic of these three categories                    | Most damaging of these three, but not a problem because totally absorbed by O <sub>2</sub> and O <sub>3</sub> in stratosphere |  |  |  |

#### **Biological Impact of UV Radiation**

In addition to breaking O-O bonds in  $O_2$  and  $O_3$ , UV radiation can break other bonds...


Biological sensitivity measures the impact on DNA, our formula tape for who we are. Mistakes can lead to cancer, birth defects

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

| Table    | 4.2     | Boi | nd Ene | ergies (in   | rgies (in kJ/mol) |     |     |        |                   |
|----------|---------|-----|--------|--------------|-------------------|-----|-----|--------|-------------------|
|          | Н       | C   | N      | 0            | S                 | F   | Cl  | Br     | I                 |
| Single E | Bonds   |     |        |              |                   |     |     |        |                   |
| H        | 436     |     |        |              |                   |     |     |        |                   |
| C        | 416     | 356 |        |              |                   |     |     |        |                   |
| N        | 391     | 285 | 160    |              |                   |     |     |        |                   |
| O        | 467     | 336 | 201    | 146          |                   |     |     |        |                   |
| S        | 347     | 272 | _      | _            | 226               |     |     |        |                   |
| F        | 566     | 485 | 272    | 190          | 326               | 158 |     |        |                   |
| Cl       | 431     | 327 | 193    | 205          | 255               | 255 | 242 |        |                   |
| Br       | 366     | 285 | _      | 234          | 213               | _   | 217 | 193    |                   |
| I        | 299     | 213 | _      | 201          | _                 | _   | 209 | 180    | 151               |
| Multiple | Bonds . |     |        |              |                   |     |     |        |                   |
| C=C      | 598     |     |        | C=N          | 616               |     | C=O | 803 ii | n CO <sub>2</sub> |
| C≡C      | 813     |     |        | $C \equiv N$ | 866               |     | C≡O | 1073   |                   |
| N=N      | 418     |     |        | 0=0          | 498               |     |     |        |                   |
| N≡N      | 946     |     |        |              |                   |     |     |        |                   |

Source: Data from Darrell D. Ebbing, *General Chemistry*, Fourth Edition, 1993 Houghton Mifflin Co. Data originally from *Inorganic Chemistry: Principles of Structure and Reactivity*, Third Edition, by James E. Huheey, 1983, Addison Wesley Longman.

374 kJ/mol



## **Consequence of ROS Production: Guanine Oxidation**

### **Guanine Oxidation Leads to Base-Pairing Disruption**

#### Normal base-pairing

T – A

C – G

C – G

C – G

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

C – C

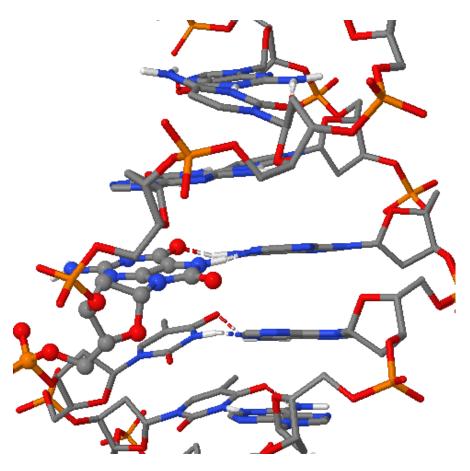
C – C

C – C

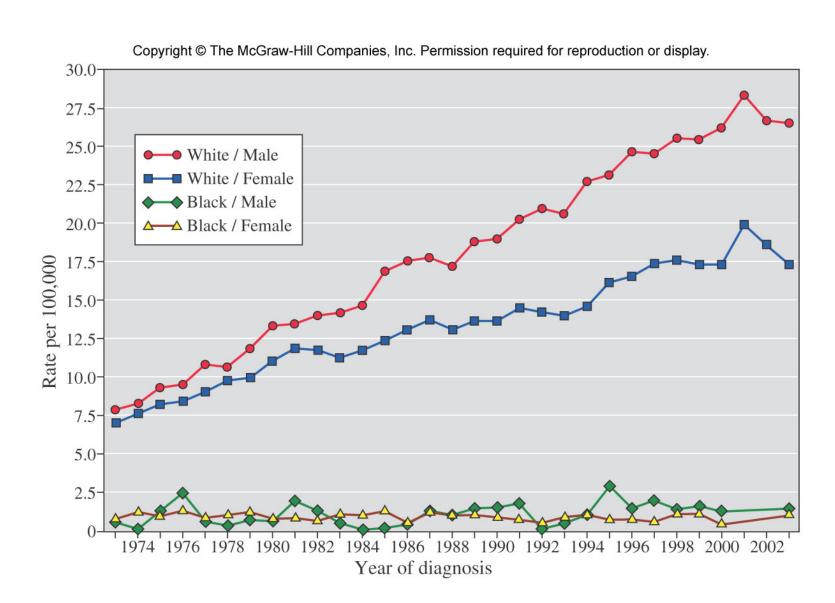
C – C

C – C

C – C


C – C

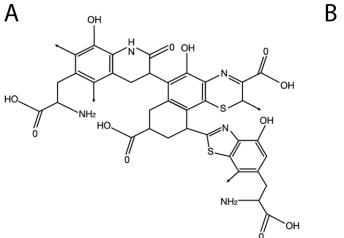
C

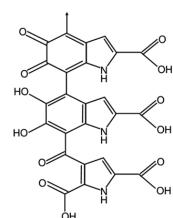

Mismatched base-pairing Instead of A-T we now have A-G

**A – G** Rutroh Astro...

## **DNA Duplex with Oxidized Guanine**




## **Incidence of Melanoma in US**




## **Tanning Beds**



Use both UV-A & UV-B radiation Exposure leads to melanin production







New Jersey Mom

#### **Sunscreens**

# Sunscreens absorb and/or scatter UVA & UVB radiation



Note: the Sun Protection Factor (SPF) only measures blockage of UVB light

TiO<sub>2</sub> & ZnO scatter UV light

| Table 2.5               | The UV  | Index                                                                                                                                                                                                                                                                                    |
|-------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Exposure Categor</b> | y Index | Sun Protection Messages                                                                                                                                                                                                                                                                  |
| LOW                     | <2      | Wear sunglasses on bright days. In winter, reflection off snow can nearly double UV strength. If you burn easily, cover up and use sunscreen SPF 15+.                                                                                                                                    |
| MODERATE                | 3–5     | Take precautions, such as covering up and using sunscreen SPF 15+, if you will be outside. Stay in shade near midday when the Sun is strongest.                                                                                                                                          |
| HIGH                    | 6–7     | Protection against sunburn is needed. Reduce time in the Sun between 10 AM and 4 PM. Cover up, wear a hat and sunglasses, and use sunscreen SPF 15+.                                                                                                                                     |
| VERY HIGH               | 8–10    | Take extra precautions. Unprotected skin will be damaged and can burn quickly. Try to avoid the Sun between 10 AM and 4 PM. Otherwise, seek shade, cover up, wear a hat and sunglasses, and use sunscreen SPF 15+.                                                                       |
| EXTREME                 | 11+     | Take all precautions. Unprotected skin can burn in minutes. Beachgoers should know that white sand and other bright surfaces reflect UV and will increase UV exposure. Avoid the Sun between 10 AM and 4 PM. Seek shade, cover up, wear a hat and sunglasses, and use sunscreen SPF 15+. |

Source: The Environmental Protection Agency, 2006.



These organic molecules **absorb** UV light & emit IR radiation: