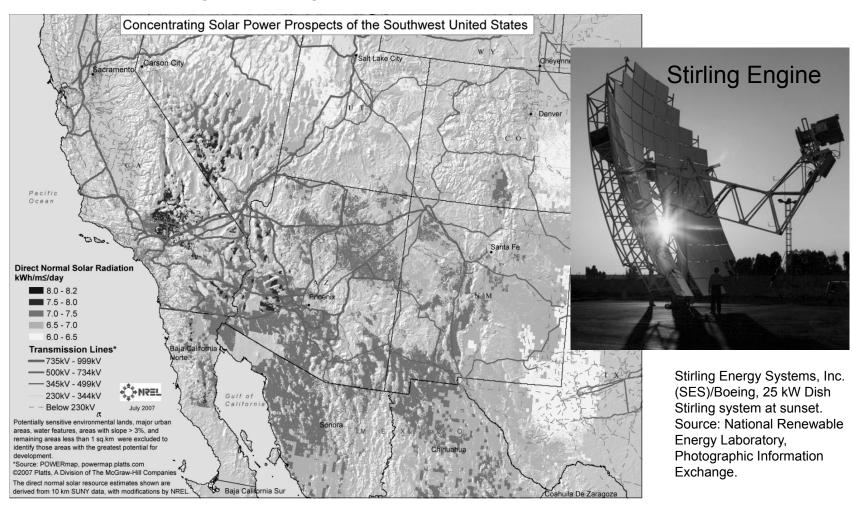

Solar Energy

- Concentrated Solar (Solar Thermal)
 - Use solar radiation to generate steam for turbine to generate electricity
- Photovoltaics (from Chapter 8)
 - directly convert photons into electricity
- Solar Fuels
 - Generate H₂ (maybe CH₃OH) by splitting water with solar photons
- Positives
 - no shortage of energy (mindboggling large amount of E!)
 - carbon neutral
- Negatives
 - sun doesn't shine all the time
 - transmission losses
 - land usage issues
 - energy cost of implementation

Alamosa SunEdison 8.22 MW PV solar plant (activated Dec 17, 2007)


Seasonally adjusted fixed-axis photovoltaic panels at the SunEdison photovoltaic power plant near Alamosa, Colorado. Steve Wilcox Source: National Renewable Energy Laboratory, Photographic Information Exchange.

Stretched-membrane heliostats with silvered polymer reflectors surround the Solar Two power tower in Daggett, California. *Credit: Sandia National Laboratories / PIX 00036*

Solar Thermal

Need direct (not angled) sunlight & power lines for transmission

Since solar thermal schemes drive heat (steam) engines, they are limited by Carnot efficiency considerations; also an issue of storage

Solar Photovoltaics (Ch. 8.9)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Photon Pure: Positive hole Si has 4 valence e Free electron Silicon atom Electron Silicon atom Electron **(b)** (a) Doped: Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Energy from Electron Transfer As has 5 valence e Electron can Missing electron move into hole or "hole"

Gallium

Electron

Ga has 3 valence e-

Extra electron

free to move

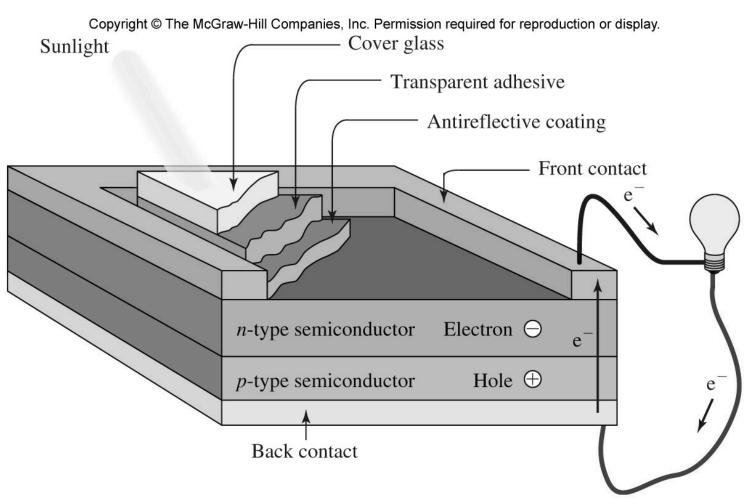
Arsenic

atom

Silicon atom

(a)

Electron

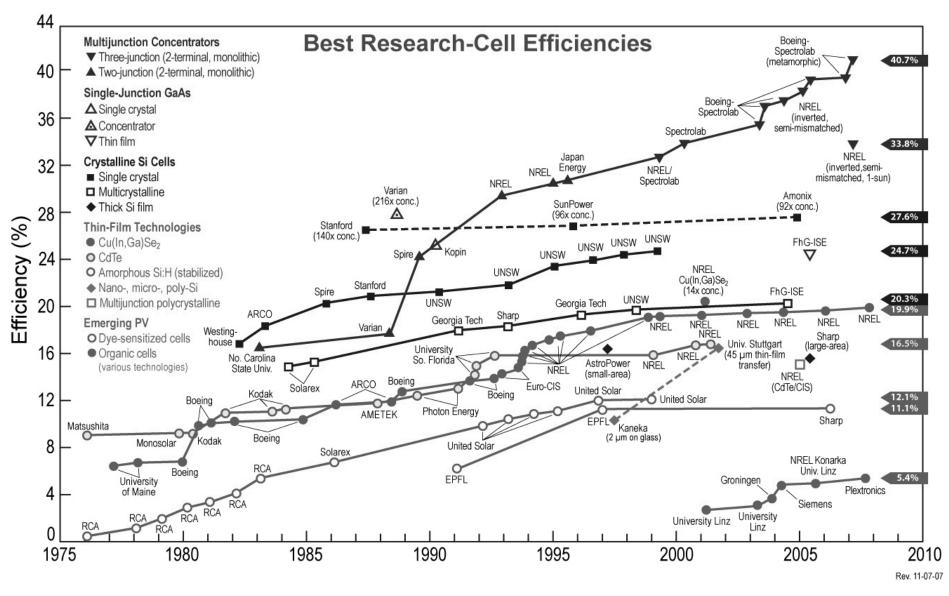

Silicon atom

(b)

The Periodic Table

1 H 1.008	2 2A				24 Cr 52.00		Atomic n					13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.003
3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 C1 35.45	18 Ar 39,95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 Ds (271)	111	112	113	114	115	(116)	(117) X	(118)
	1																
	Metals	ids		58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm (145)	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164,9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
	Nonmetals			90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

A Photovoltaic Cell



Solar cell efficiency(%)= $\frac{\text{Power out (W) x 100\%}}{\text{Area(m}^2)\text{x1000W/m}^2}$

(10% efficiency=100W/m² or 10W/ft²)

Energy content of incoming sun light

PV Cell Efficiencies Since 1975

Lawrence Kazmerski, Don Gwinner, Al Hicks, 11/11/07, NREL

Solar PV Energy Balance Calculations

System Energy Payback Times for Several Different Photovoltaic Module Technologies

Cell Technology	Energy Payback Time (EPBT) ¹ (yr)	Energy Used to Produce System Compared to Total Generated Energy ² (%)	Total Energy Generated by System Divided by Amount of Energy Used to Produce System ²			
Single-crystal silicon	2.7	10.0	10			
Non-ribbon multicrystalline silicon	2.2	8.1	12			
Ribbon multicrystalline silicon	1.7	6.3	16			
Cadmium telluride	1.0	3.7	27			

^{1.} V. Fthenakis and E. Alsema, "Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004-early 2005 status," *Progress in Photovoltaics, vol.* 14, no. 3, pp. 275-280, 2006.

^{2.} Assumes 30-year period of performance and 80% maximum rated power at end of lifetime.

Solar Panels

Typical solar panel is 1 m x 2 m & produces 75-350 Watts of power

Solar cell efficiency(%)=
$$\frac{\text{Power out (W) x 100\%}}{\text{Area(m}^2)\text{x1000W/m}^2}$$
 (10% efficiency=100W/m² or 10W/ft²)
$$\frac{75 \text{ W}}{1 \text{ m} \times 2 \text{ m} \times 1000\text{W/m}^2} \times 100\% = 3.7\%$$
 Energy content of incoming sun light
$$\frac{350 \text{ W}}{1 \text{ m} \times 2 \text{ m} \times 1000\text{W/m}^2} \times 100\% = 17.5\%$$

It is dark at night so panel only produces electricity ~ 1/3 of the time, so 117 W/panel

$$117 \text{ W} = \frac{117 \text{ J}}{\text{sec}} \times \frac{60 \text{ sec}}{1 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hr}} \times \frac{24 \text{ hr}}{1 \text{ day}} \times \frac{365 \text{ days}}{1 \text{ year}} = 3.7 \times 10^9 \text{ J} = 3.7 \text{ GJ}$$

US uses 13.3 EJ electricity/year, so

$$13.3 \times 10^{18} \text{ J} \times \frac{\text{panel}}{3.7 \times 10^9 \text{ J}} = 3.6 \times 10^9 \text{ panels} \Rightarrow 7.2 \times 10^9 \text{ m}^2 = 7,200 \text{km}^2$$

Context:

100 million homes in US, putting 12 panels on each would give 1/3 of needed power US Interstate highway system is 3,500 km²

A Grand Solar Plan Indeed

Zweibel, K.; Mason, J. Fthenakis, V. "A Solar Grand Plan", Scientific American, 298 #1 64-73 **2008**.

Goal for 2050 (2007) PV:

> 30,000 sq miles land (10 sq miles) 14% module efficiency (10%) Installed cost: \$1.2/W (\$4/W)

Electricity price: \$0.05/kWh (\$0.16/kWh) Total capacity: 2,940 GW (0.5 GW)

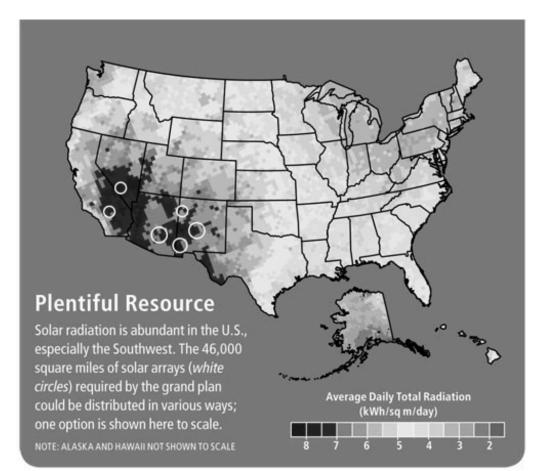
Compressed Air storage:

535 billion cu ft (0)

Installed cost: \$3.9/W (\$5.80/W)
Electricity price: \$0.09/kWh (\$0.20/kWh)

Total capacity: 558 GW (0.1 GW)

Solar Thermal:


16,000 sq miles land (10 sq miles) 17% module efficiency (13%) Installed cost: \$3.7/W (\$5.30/W) Electricity price: \$0.09/kWh (\$0.18kWh)

Electricity price: \$0.09/kWh (\$0.18kW Total capacity: 558 GW (0.5 GW)

- Goal: to provide 69% of our electricity
- Goal: to provide 35% of our total energy
- 46,000 square miles of land will be required (size of New York state)
- \$420 Billion investment (2007 Federal budget for Defense was \$700B)


Assuming 2 year energy payback:

2 years × 4056GW ×
$$\frac{24 \text{ hrs}}{1 \text{ day}_{\text{fraction sunny}}} \times 0.35 \times \frac{365 \text{ days}}{1 \text{ year}} \times 0.85 \times \frac{1 \times 10^6 \text{kW}}{1 \text{ GW}} \times \frac{3.6 \times 10^6 \text{J}}{1 \text{kWh}} = 38.0 \times 10^{18} \text{J} = 38.0 \times 10^{18} \text{J}$$
hours in a day days in a year

Energy Summary

World Reserves	
Coal	20,200 EJ
Natural Gas	7,170 EJ
Oil	10,200 EJ
US use:	
Coal	20.8 EJ
Natural Gas	26.3 EJ
Oil	37.2 EJ
Nuclear	8.7 EJ
Biofuels	16.7 EJ
Wind	36 EJ
Solar	38 EJ

Cost of Electricity from Alternative Energy Sources

TABLE 6.3 – LEYELIZED COSTS OF NEW GENERATION RESOURCES FOR 2017 (FROM EIA 2013 ENERGY REPORT)					
PLANT TYPE	LEVELIZED COST (\$/kWh)				
Conventional Coal	0.0977				
Advanced Coal	0.1109				
Advanced Coal with CCS	0.1388				
Natural Gas – Conventional Combined Cycle (CC)	0.0661				
Natural Gas – Advanced CC	0.0631				
Natural Gas – Advanced CC with CCS	0.0901				
Natural Gas – Conventional Combustion Turbine	0.1279				
Natural Gas – Advanced Combustion Turbine	0.1018				
Advanced Nuclear	0.1114				
Geothermal	0.0982				
Biomass	0.1154				
Wind	0.0960				
Solar PV	0.1527				
Solar Thermal	0.2420				
Hydro	0.0889				