CHEM 103: Chemistry in Context

Unit 3
Energy, Chemistry and Society

Unit 3.2
Alternative Energy

Reading: CC Chapters 7.4, 7.6, 4.9, 11.3, 11.9, 8.7, and G&R 7,8



Nuclear Option

Reading: Chapter 7 (CC & G&R)

1. How nuclear reactors produce electricity

- 2. How fission produces energy
- 3. Radioactivity
- 4. Costs, risks and benefits of nuclear power


http://en.wikipedia.org/ wiki/Nuclear_weapon

"Fat Man" atomic bomb 20 kiloton TNT (84 TJ)

http://www.cbsnews.com/2300-202_162-10007053.html

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

~20% of our (US) electricity comes from nuclear fission

Nuclear-Powered Electricity (Ch. 7.3)

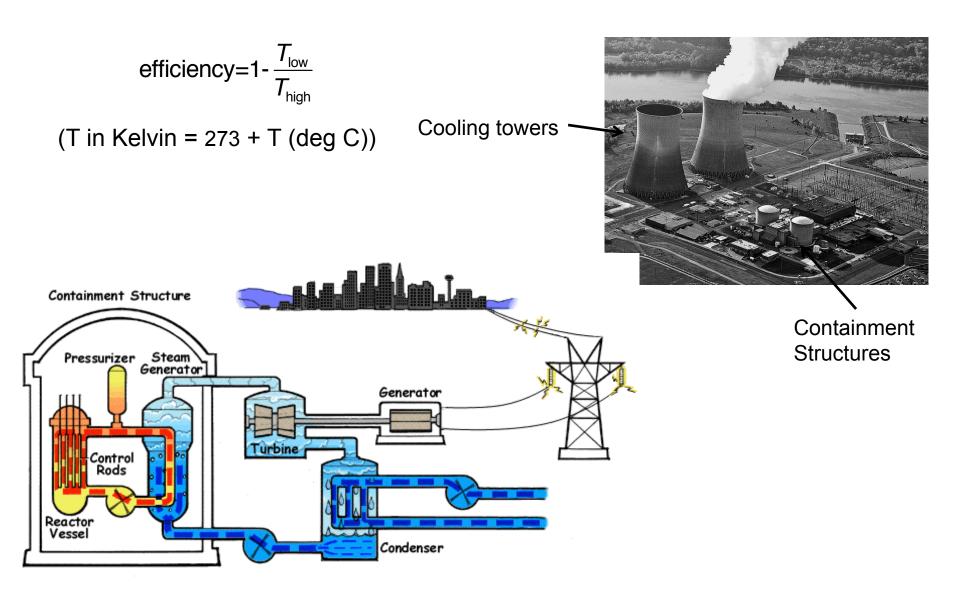
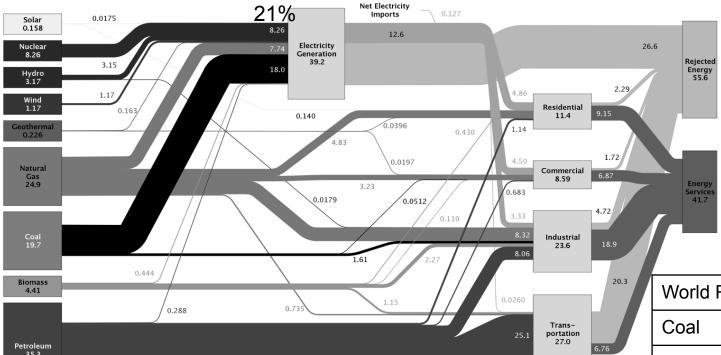



Image by US Nuclear Regulatory Commission Figure 7.1 – Schematic of a nuclear power plant

Nuclear Energy Flows to Electricity

Estimated U.S. Energy Use in 2011: ~97.3 Quads

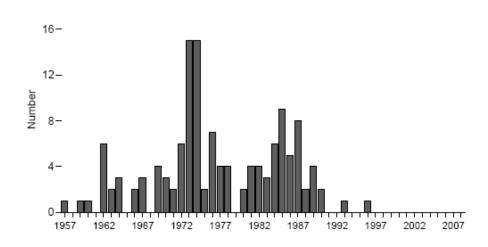
Source: LLNL 2012. Data is based on DOE/EIA-0384(2011), October, 2012. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laborate and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports flows for non-thermal resources (i.e., hydro, wind and solar) in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 80% for the residential, commercial and industrial sectors, and as 25% for the transportation sector. Totals may not equal sum of components due to independent rounding, LLNL-MI-410527

World Reserves	
Coal	20,200 EJ
Natural Gas	7,170 EJ
_{ry} Oil	10,200 EJ
US use:	
Coal	20.8 EJ
Natural Gas	26.3 EJ
Oil	37.2 EJ
Nuclear	8.7 EJ

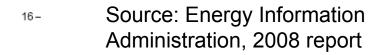
Nuclear Energy Contribution (US)

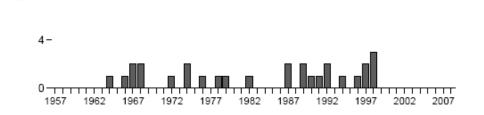
Facts (www.nrc.gov)

- 104 licensed nuclear power plants in US (2011)
- ~3 EJ per year total output
- all in the form of electricity (~1/5 of electricity used in US annually)
- 17 applications for new power plants (2007-9)
- 0 new applications 2010-11
- 7 applications expected in near future (2012-6)


Positives

- no carbon dioxide emissions
- can operate at any time


Negatives


- expensive setup
- radioactive waste
- security concerns
- only produces electricity

Full-Power Operating Licenses Issued,2 1957-2008

Permanent Shutdowns by Year, 1957-2008

Note: Data are at end of year. Source: Table 9.1.

12-

Nuclear Power Usage Worldwide

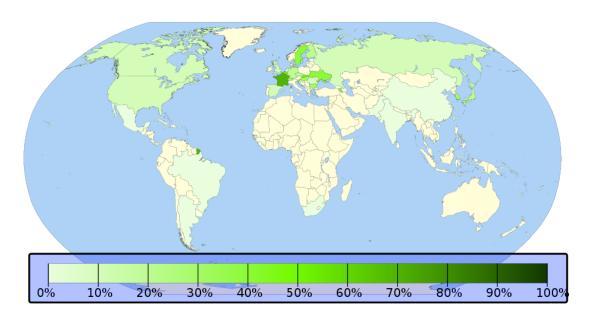


Image by NuclearVacuum/CC BY-SA 3.0 Figure 7.3 – Percentage of electricity generated by nuclear power by country

Country	% of electricity from nuclear power		
France	80%		
Slovakia, Belgium			
Ukraine, Hungary	50%		
Sweden, Slovenia			
Switzerland, Czech Republi	ic 30-40%		
Finland, Bulgaria, South Kor	rea.		
Japan	29% (Prior to the Fukuyama-Daichi disaster in 2011)		
US	19%		
Russia	18%		
China	2%		

Where U²³⁸ reserves are in US

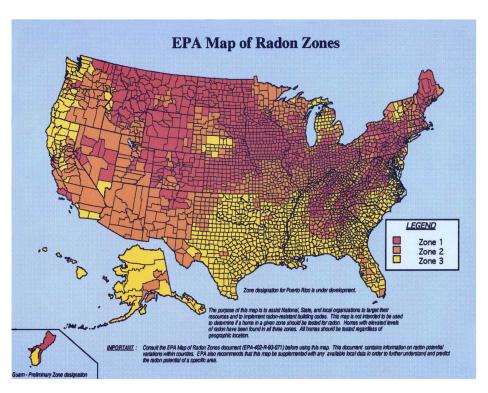


Image from US Geological Survey/EPA

Figure 7.4 – Radon levels in the United States. Zone 1 (red) indicates high levels; zone 3 (yellow), low levels. Radon levels also are an indicator of uranium.

Reducing CO₂ Emissions with Nuclear Power (?)

How many new nuclear power plants would have to be built to replace the US electricity generated by fossil fuel combustion?

In 2011, 66.4% of energy for electricity came from fossil fuels (energy flow chart)

12.6 Quad total useful electrical energy generated in 2011 = 13.3 EJ

$$0.664 \times 13.3 EJ = 8.8 EJ$$

Reasonable assumption: each nuclear power plant generates 1 GW of power

$$1 \text{ GW} = \frac{1 \text{ GJ}}{\text{sec}} = \frac{10^9 \text{ J}}{\text{sec}}$$
 power x time = energy

$$\frac{10^9 \text{ J}}{\text{sec}} \times \frac{60 \text{ sec}}{\text{min}} \times \frac{60 \text{ min}}{\text{hr}} \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365 \text{ day}}{\text{yr}} = \frac{3.154 \times 10^{16} \text{ J}}{\text{yr}}$$
 $\sim 0.0315 \text{ EJ / year}$
per power plant

8.8 EJ x
$$\frac{1 \text{ power plant}}{0.0315 \text{ EJ}}$$
 = 279 NEW nuclear power plants required (We have 104 operating in the US today.)

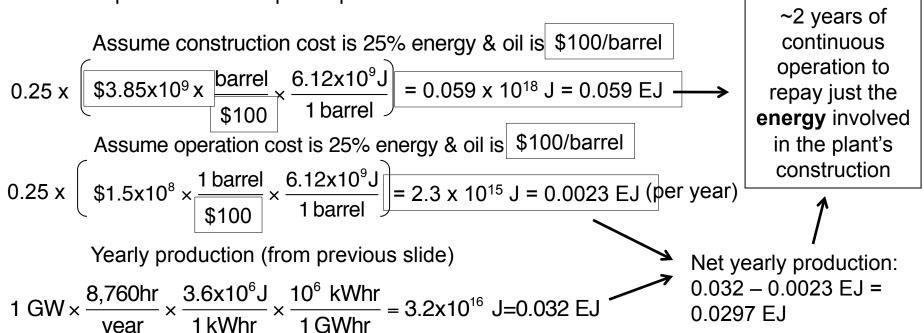
Energy Payback for Nuclear Power (updated 2011)

Cost of nuclear power plant:

1 GW PP construction cost:
$$\frac{\$3,500}{1 \text{ kW}} \times \frac{10^6 \text{ kW}}{1 \text{ GW}} = \$3.5 \times 10^9$$

Construction \$3,500 / kW

Production: \$0.0168 / kW•hr


1 GW PP operation cost: $\frac{\$1.68 \times 10^{-2}}{\text{kWhr}} \times \frac{10^{6} \text{kWhr}}{1 \text{GWhr}} \times \frac{8,760 \text{hr}}{\text{vear}} = \$1.5 \times 10^{8} / \text{year}$ Decommissioning costs:

\$300M up to 10% of the

construction cost

http://nuclearinfo.net/Nuclearpower updated June 2010

Let's pretend that labor is free (it worked for the pyramids). How much **energy** is required to build and operate a nuclear power plant?

Radioactivity

Radioactivity is the spontaneous emission of radiation

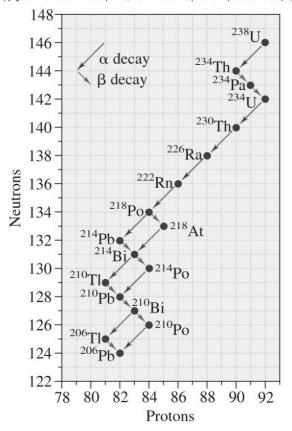

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

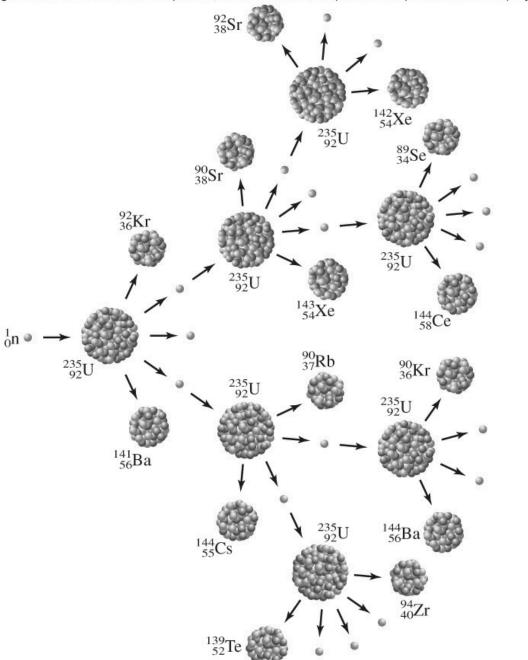
Table 7	Types of Nuclear Radiation			
Type	Symbol	Composition	Charge	Change to the Nucleus That Emits It
Alpha	⁴ ₂ He	2 protons 2 neutrons	2+	Mass number decreases by 4. Atomic number decreases by 2.
Beta	0e	an electron	1-	Mass number does not change. Atomic number increases by 1.
Gamma	$^{0}_{0}\gamma$	a photon	0	No change in either the mass number or the atomic number.

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$$

$$^{234}_{90}Th \rightarrow ^{234}_{91}Pa + ^{0}_{-1}e \quad \left(^{1}_{0}n \rightarrow ^{1}_{1}p + ^{0}_{-1}e \right)$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

All elements with atomic # 84 & higher are radioactive Examples of lighter radioactive isotopes: ³


1H, ¹⁴
6C, ⁴⁰
1H, ⁹⁸
1Tc

Chain Reaction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

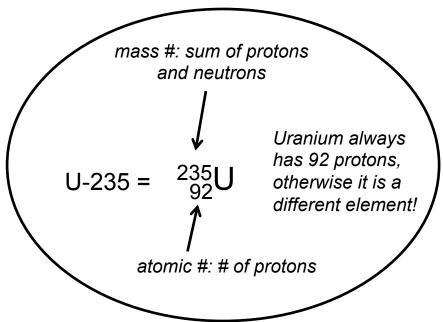
U-235 + 1 neutron may make several fission products...

When balancing fission reactions, make sure the mass numbers and # of protons are conserved on both sides of the equation

Energy from Fission: Breaking up Nuclei

$$E = mc^2$$
 $c = 3x10^8$ m/s $\rightarrow c^2 = 9x10^{16}$ m²/s²

$$_{0}^{1}$$
n + $_{92}^{235}$ U $\rightarrow \left[_{92}^{236}$ U $\right] \rightarrow _{56}^{141}$ Ba+ $_{36}^{92}$ Kr+3 $_{0}^{1}$ n


²³⁵U mass=235.0439299

¹n mass=1.008665

¹⁴¹₅₆Ba mass=140.916453

92₃₆Kr mass=91.926156

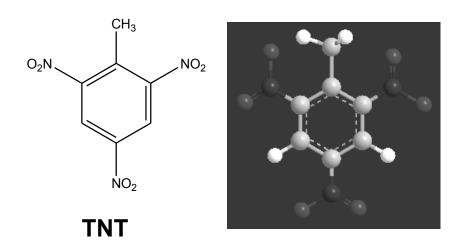
∆mass=-0.1839909

For 1 mole of $^{235}_{92}$ U Δ mass=-0.1839909 g

$$\Delta E = \Delta mc^2 = 0.184 \times 9 \times 10^{16} \text{g m}^2/\text{s}^2 = 1.66 \times 10^{16} \text{g m}^2/\text{s}^2 \left(1 \text{ J=1kg m}^2/\text{s}^2\right)$$

so
$$\Delta E = 1.66 \text{ x} 10^{16} \text{g m}^2/\text{s}^2 \times \frac{1 \text{ kg}}{1000 \text{ g}} \times \frac{1 \text{ J}}{1 \text{kg m}^2/\text{s}^2} = 1.66 \text{ x} 10^{13} \text{ J} = 1.66 \text{ x} 10^{10} \text{ kJ}$$

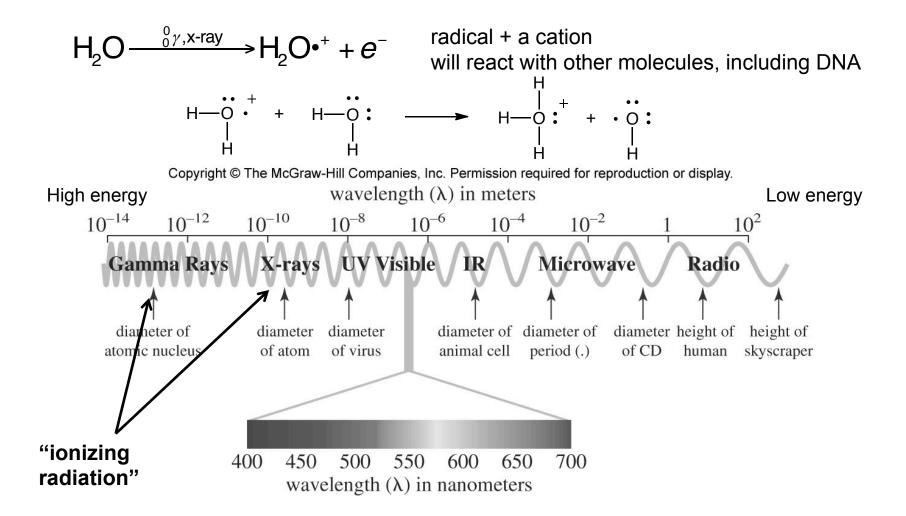
or an energy content of 1.66 x10¹⁰ kJ/mol ×
$$\frac{1 \text{ mole}}{235.0g}$$
 =7.1x10⁷ kJ/g


Actual: ~8.8x10⁷ kJ/g

i.e. a lot of energy!

5 train cars of coal Energy density=70.5 GJ/g (natural gas is 50 kJ/g)

Dynamite vs Fission... (Ch. 7.2)


TNT, or trinitrotoluene (discovered in 1863 by Alfred Nobel) became the standard of explosive power. The power of emerging nuclear weapons was therefore compared to TNT...

2 moles of (unstable) TNT rearrange to form 15 moles of hot gas (3 mol N_2 , 7 mol CO, 5 mol H_2 O) plus some carbon. About 1 g of TNT will produce about 1 L of hot gas – a 1000 times increase in volume +4.2kJ energy.

Fission of 1 g of U-235, where only about 0.1% of its mass is converted to energy, is equivalent to the detonation (explosive combustion) of 33 tons of TNT.

Radioactivity and You

rapidly dividing cells particularly susceptible

- + for cancer treatment
- for bone marrow, skin, intestinal linings, other healthy cells that divide rapidly

Radiation Exposures and Doses

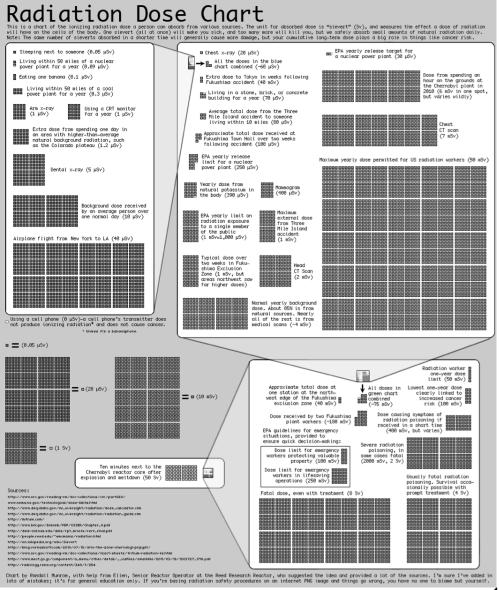
Exposure to ionizing radiation is measured in rads—0.01 J per kg tissue

Dose takes into account the total energy of the absorbed radiation, what tissues are absorbing it, as well as the type of radiation

Units of dose are rem and Sieverts (Sv): rem = (#rads) x Q (range 1-20) 1 mrem = 10 µSv

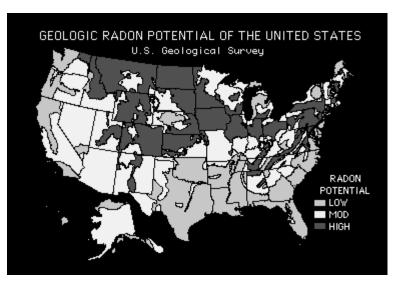
Typical US **background radiation** dose = 360 mrem
(but somewhat higher in CO)

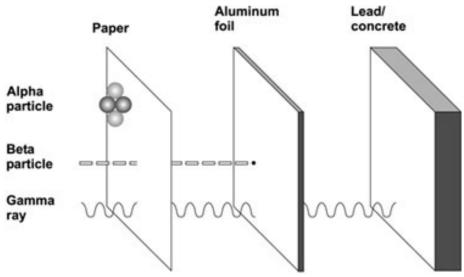
ref 1: www.ocrwm.doe.gov/ factsheets/doeymp0403.shtml


Activity	Radiation dose per year (mrem)	Ref.
Living in Ft. Collins (5000 ft elevation, lots of U in soil)	140	1
Food, water, air	240	Text
Nuke fallout	1	Text
Live near nuclear power plant	0.009	Text
Live near coal fired power plant	0.03	Text
Watch TV	1	Text
Smoke 1 pk/day	1000	Text
Airplane flight (roundtrip)	2-5	1
Dental X-rays	10-39	1
Chest X-ray	10	Text
Computer use	0.1	Text

Visual

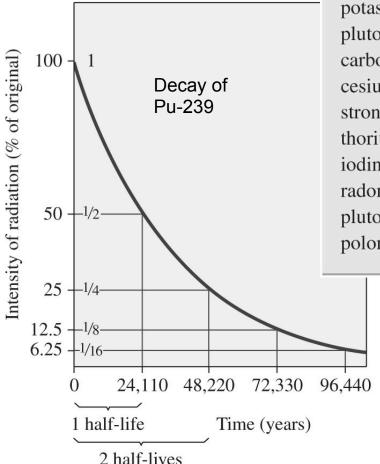
Living in Ft. Collins (5000 ft elevation, lots of U in soil (1400 μ S)


Smoke 1 pk/day 10,000 µS)



Radiation

- Why is background radiation higher in CO?
 - higher altitude (less atmosphere to block cosmic rays)
 - more rocks (granite)
 - higher U content
 - higher Rn content from U radioactive decay
- Blocking sources of radioactivity
 - alpha particles blocked by dead skin layer—only dangerous if ingested
 - beta particles blocked by Plexiglas and distance
 - gamma particles require lead, concrete, or other dense materials


http://energy.cr.usgs.gov/radon/rnus.html

www.ocrwm.doe.gov/factsheets/doeymp0403.shtml

Nuclear Waste: Here Today, Here Tomorrow

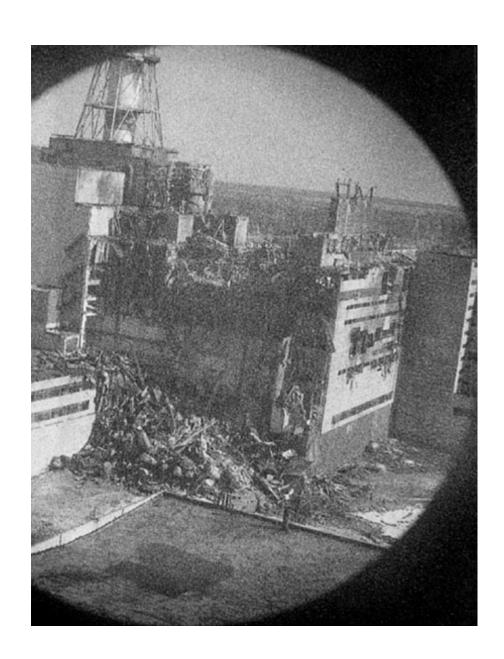
Half-life: the time required for the level of radioactivity to fall to one-half of its initial value.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or Table 7.5 **Half-Lives for Selected Radioisotopes** Radioisotope Half-life $(t_{1/2})$ 4.5×10^9 years uranium-238 1.3×10^9 years potassium-40 plutonium-239 24,110 years carbon-14 5715 years cesium-137 30.2 years strontium-90 29.1 years thorium-234 24.1 days iodine-131 8.04 days radon-222 3.82 days 8.5 minutes plutonium-231 polonium-214 0.00016 seconds

High level radioactive waste includes spent nuclear fuel and other things with long half lives —must be permanently separated from life.

Low level radioactive waste represents ~90% of the radioactive waste generated.

Dealing with Radioactive Materials


- Reprocessing
 - extract useful fuel from spent fuel
- Breeder reactors
 - n + U-238 → Pu-239 + energy
 - Pu-239 → fission products + energy
- Storage of fuel rods
 - storage pools (e.g. @ Fukushima
 AND every reactor in the US)
- Vitrification and storage, but where?
 - Yucca Mountain, NV?
 - Scandinavia?

- Nuclear weapons vs fuel
 - naturally mined uranium: ~0.7%U-235
 - fuel: 3-5% enriched in U-235
 - weapons: 90% U-235
 - depleted uranium: ~99.8% U-238
 - · radioactive but not fissile
 - critical mass for U-235: 55 kg
 - critical mass for Pu-239: 10 kg
 - · according to Wikipedia
- Uranium centrifuges
 - U-238 heavier than U-235
 - $UF_4 + F_2 \rightarrow UF_6$ (gas)
- Dirty bombs
 - conventional bombs + radioactive material

Chernobyl (1986)

The Chernobyl disaster was not a nuclear explosion:

- tremendous heat caused a pressure spike, ruptured fuel elements & released nuclear fuel particles which exploded when they contacted coolant water
- graphite (carbon) used to slow neutrons caught on fire
 - graphite control rods not used in US
- graphite & water (water gas chemistry) reacted to produce H₂ which explosively reacted with O₂ in the air
- 9 tons radioactive material emitted
 - equivalent to 100 Hiroshima bombs

Nuclear Summary

- Fission vs fusion
- Balancing fission equations
- How nuclear energy is converted to electricity (it's all about steam production)
 - $E = mc^2$
 - 20% of our electricity comes from nuclear sources
- Radioactivity
 - health effects
 - exposure and dose (rem)
 - how to block radiation
- Issues with using nuclear power
 - radiation (and public fear of radiation), nuclear waste, nuclear weapons, upfront costs, only electricity is produced (storage is difficult)